Safety Evaluation of Permissive Flashing Yellow Arrows for Left-Turn Movements in Missouri

February 2023	Project number TR202102
Final Report	MoDOT Research Report number cmr 23-005

PREPARED BY:
Joseph G. Jones, P.E.
Nick Foster, AICP
Kush Bhagat, P.E.
Leidos, Inc.

PREPARED FOR:

Missouri Department of Transportation
Construction and Materials Division, Research Section

TECHNICAL REPORT DOCUMENTAT ION PAGE

1. Report No. cmr 23-005	2. Government Accession No.		3. Recipient's Catalog No.	
4. Title and Subtitle Safety Evaluation of Permissive Flashing Yellow Arrows for LeftTurn Movements in Missouri			5. Report Date January 2023 Published: February 2023	
			6. Performing Organization Code	
7. Author(s) Joseph G. Jones, P.E.; Nick Foster, AICP; and Kush Bhagat, P.E.			8. Performing Organization Report No.	
9. Performing Organization Name and Address Leidos, Inc. 1750 Presidents Street Reston, VA 20190			11. Contract or Grant No. MoDOT project \# TR202102	
12. Sponsoring Agency Name and Address Missouri Department of Transportation (SPR-B) Construction and Materials Division P.O. Box 270 Jefferson City, MO 65102			13. Type of Report and Period Covered Final Report (January 2021-April 2023)	
			14. Sponsoring Agency Code	
15. Supplementary Notes Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. MoDOT research reports are available in the Innovation Library at https://www.modot.org/research-publications.				
16. Abstract With over a decade of crash data available since the beginning of flashing yellow arrow (FYA) use, MoDOT decided to objectively investigate the safety performance of the system. Additionally, they wished to have an accurate inventory of all FYA installations statewide, and a determination of the benefit-cost ratio of the signal system. A virtual survey of every signalized intersection on the MoDOT system revealed 841 FYA signals, and the research team either recorded dates relayed by MoDOT or estimated them from as-built plans or photo logs. A simple before and after analysis revealed FYA operation appears to reduce KABC left turn opposite direction crashes about 14 percent and left turn opposite direction O crashes approximately 18 percent when protected-permissive left turn phasing is used before and after FYA installation. Further, this analysis estimates that the lifecycle benefits of installing FYA on an intersection approach are expected to be approximately 5 to 44 times greater than the installation cost, depending on the left turn phasing used before and after FYA installation.				
17. Key Words Flashing yellow arrow; Signal; I reduction; Cost benefit; Left turn	ersection; Crash	18. Distributio No restriction through the N Service, Sprin	Statement This document is ional Technical I field, VA 22161	available formation
19. Security Classif. (this report) Unclassified	20. Security Classif. (this page) Unclassified		21. No. of Pages 96	22. Price

SAFETY EVALUATION OF PERMISSIVE FLASHING YELLOW ARROWS FOR LEFT-TURN MOVEMENTS IN MISSOURI

Submitted by

Joseph G. Jones, P.E.
Senior Transportation Engineer
Nick Foster, AICP, RSP ${ }_{1}$,
Associate Planner

Kush Bhagat, P.E., RSP ${ }_{1}$, IMSA II
Engineer

Leidos, Inc.
1750 Presidents Street
Reston, VA 20190

Submitted to

Missouri Department of Transportation
105 W. Capitol Avenue
Jefferson City, MO 65102

February 3, 2023

COPYRIGHT

Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or individuals who own the copyright to any previously published or copyrighted material used herein.

DISCLAIMER

The opinions, findings, and conclusions expressed in this document are those of the investigators. They are not necessarily those of the Missouri Department of Transportation, U.S. Department of Transportation, or Federal Highway Administration. This information does not constitute a standard or specification.

ACKNOWLEDGEMENTS

The authors acknowledge several sources that contributed to this project. The research was solicited and funded by the Missouri Department of Transportation (MoDOT). Jenni Hosey, MoDOT Research, served as the Technical Manager for the Missouri Department of Transportation. The following MoDOT staff members contributed as technical working group members, reviewers or provided input or feedback to the project at various stages: Lisa Vieth, Ashley Buechter, Ray Shank, Jennifer Harper, Ryan Martin, Darla Stumpe, Myrna Tucker, Carrie Ahart, Adam Wood, Jonathan Bruner, Alejandro Martinez, Susan Summers-Harmon, John Schaefer, James Collier, Marc Lewis, Grant Bowers, Jason Vanderfeltz, Jay Bestgen, Tim Oligschlaeger, and Jeff Bohler. Additionally, many individual Leidos and Kittelson staffers made significant contributions to this project:special thanks to Michelle Neuner, Brandon Krzynefsky, Lauren Delich, Azhagan Avr, and James Bonneson, PhD.

EXECUTIVE SUMMARY

With over a decade of crash data available since the beginning of flashing yellow arrow (FYA) use, the Missouri Department of Transportation (MoDOT) decided to objectively investigate the safety performance of the system. Additionally, they wished to have an accurate inventory of all FYA installations statewide, and a determination of the economic impact of the signal system.

Traffic engineers use protected-permissive left-turn signals because they can improve operations and reduce delay by providing an additional phase in which motorists can complete left turns if there are safe gaps in oncoming traffic. Overthe years, transportation agencies have mostly relied upon 5-section signal heads with a LEFT TURN YIELD ON GREEN sign.

Although this configuration was used frequently, engineers still had concerns that drivers turning left on a circular green indication might inadvertently mistake the signal as implying the left-turn vehicle has the right of way over oncoming traffic. As a result, the National Cooperative Highway Research Program (NCHRP) initiated a research project that eventually concluded FYA signals allowed more flexibility and operational benefits, provided significant improvements to left-turn safety, and were better understood by the public than other leftturn signal variations.

In 2007, the Federal Highway Administration (FHWA) issued a policy memorandum stating that motorists responded strongly and favorably to the concept and intuitively knew what the FYA meant. In 2009, the Manual on Uniform Traffic Control Devices (MUTCD) included FYA signal indication as a standard when a separate left-turn signal head is used over the left-turn lane and is operated in a protected/permissive mode or a permissive mode.

Even before the 2007 FHWA memorandum, MoDOT began using FYA indications under an interim approval agreement with FHWA. The agency did not undertake a wholesale replacement program but rather began installing FYA for permissive movements at new signals and replacing existing circular green permissive indications with FYA when they had reached the end of their service life.

Before any safety analysis could begin, the research team had to determine the location of every FYA left turn signal indication in the State. This involved a virtual examination of every signalized intersection statewide. The virtual examination was necessitated by the project's budget and timeline, and an existential pandemic-COVID-19—that was at its height during the data collection phase. The team used MoDOT's Automatic Road Analyzer (ARAN) videologs and the Streets function of Google Maps or Google Earth to perform the examinations.

Following the virtual survey and the documentation of installation dates for each FYA indication, the research team queried the corresponding crash data for a 3-year before and after installation. From this data, they were able select sites for study and perform the safety analysis. The simple before and after study they performed was sufficient to meet MoDOT's
objective of determining the safety of FYA indications. Given this and the fact that the findings were generally consistent with previous nationwide research, the agency and the research team deemed a more robust analysis such as Empirical Bayes infeasible and unnecessary.

The virtual survey of every signalized intersection on the MoDOT system revealed 841 FYA signals, with installation dates ranging from 2007 to 2021 . The safety analysis revealed that FYA operation appears to reduce fatal+injury (KABC) left turn opposite direction crashes by about 14 percent and left turn opposite direction property damage only (O) crashes approximately 18 percent when protected-permissive left turn phasing is used before and after FYA installation.

When left turn phasing shifts from protected to more permissive phasing, there is an expected increase in LTOD crashes, irrespective of left turn signal indication. The safety benefit associated with installing FYA does not appear to overcome this increase.

The economic analysis estimated the lifecycle benefits of installing FYA on an intersection approach are expected to be approximately 5 to 44 times greater than the installation cost, depending on the left-turn phasing used before and after installing FYA operation.

Based on these results, FYA could be expected to produce a safety and economic benefit for left turn opposite direction crashes at locations where it is being used to replace circular green permissive left-turn indications.

CONTENTS

Introduction 1
Asset Data Collection 2
Virtual Survey 2
Attributes 3
Cardinal Direction Assignment 3
Installation Dating 5
Crash Data 7
Site selection 8
Sample Sizes 8
Research Approach 10
Basic Safety Analysis 10
Analysis Process 10
Crash Assignment 11
Analysis Parameters 11
Performance Measures and Methodology 11
Results 12
Approach-Level Analyses 12
Intersection-Level Analyses 20
Summary 22
Economic Analysis 23
Additional Analysis Viability Assessment 24
Conclusion 25
References 27
Appendix A - FYA Locations and Installation Dates A-1
Northwest District A-2
Northeast District A-4
Kansas City District A-5
Central District A-15
St. Louis District A-23
Southwest District A-48
Southeast District A-54

FIGURES

Figure 1. Cardinal direction assignments for intersection
Figure 2. Phasing rules .. 5
TABLES
Table 1. Summary of methods used to estimate FYA installation dates 7
Table 2. Safety analysis data summary 8
Table 3. Sites and crashes by number of legs, land-use context, and FYA approach phasing 9
Table 4. FYA approaches by left turn phasing 9
Table 5. LTOD crashes by severity (all locations) 13
Table 6. LTOD crash frequency by left-turn phasing (all locations) 13
Table 7. Before-after analysis results (all locations) 14
Table 8. Before-after analysis results (urban intersections) 15
Table 9. Before-after analysis results (rural intersections) 16
Table 10. Before-after analysis results (one opposing through lane) 17
Table 11. Before-after analysis results (two opposing through lanes) 18
Table 12. Before-after analysis results based on posted speed limit 19
Table 13. Before-after analysis results for intersections 20
Table 14. Pedestrian crashes 21
Table 15. CMFs from past studies compared to this study 23
Table 16. Benefit-cost analysis results 24

ABBREVIATIONS

A	Serious injury crash
AADT	Average annual daily traffic
ARAN	Automatic Road Analyzer
B	Minor injury crash
B/C	Benefit-cost
C	Possible injury crash
CD	Central District
CMF	Crash modification factor
COVID-19	Coronavirus disease of 2019
E	East
EB	Empirical Bayes
FHWA	Federal Highway Administration
FYA	Flashing yellow arrow
K	Fatal crash
KABC	Fatal + injury crashes
KABCO	All crash severities
KC	Kansas City District
LTOD	Left-turn opposite direction
MoDOT	Missouri Department of Transportation
MUTCD	Manual on Uniform Traffic Control Devices
N	North
NCHRP	National Cooperative Highway Research Program
NE	Northeast District
NW	Northwest District
O	No injury crash - property damage only
PM	Permissive
PP	Protected-permissive
PT	Protected
RAISE	Rebuilding American Infrastructure with Sustainability and Equity
S	South
SL	St. Louis District
SE	Southeast District
SW	Southwest District
TMS	Transportation Management System
US	United States
USDOT	United States Department of Transportation
W	West

Introduction

Traffic engineers use protected/permissive left-turn signals because they can improve operations and reduce delay for motorists by providing a phase in which left-turn traffic has the right of way (protected) and a phase when drivers can complete left turns if there are safe gaps in oncoming traffic (permissive). Over the years, transportation agencies have used many variations in signal phasing, signal displays, placement, and supplemental signs to accommodate protected/permissive left turns. The most common was the five-section signal head with a LEFT TURN YIELD ON GREEN sign. Although this configuration was used frequently, engineers still had concerns that drivers turning left on a circular green indication might inadvertently mistake the signal as implying the left-turn vehicle has the right of way over oncoming traffic.

As a result, the National Cooperative Highway Research Program (NCHRP) initiated a research project in the mid-1990s to evaluate the operational and safety characteristics of all the various signal displays transportation agencies were using for protected/permissive left-turn movements. Over a 7-year period, researchers conducted a comprehensive investigation, including engineering analyses, static and video-based driver comprehension studies, field implementation, video conflict studies, and crash analyses. In 2003, these researchers published their findings in NCHRP Report 493, Evaluation of Traffic Signal Displays for Protected/Permissive Left-Turn Control (USDOT, 2006). The findings of this research project and a 2007 follow-up safety study (Noyce, et al., 2008) revealed that the flashing yellow arrow (FYA) signal allowed more flexibility and operational benefits, provided significant improvements to left-turn safety, and was better understood by the public than other left-turn signal variations.

The Federal Highway Administration's (FHWA) Office of Transportation Operations also reviewed the published research and deemed the FYA to be successful. In 2007, FHWA issued a policy memorandum, Interim Approvalfor Optional Use of FYA for Permissive Left-Turns. FHWA's evaluation stated that motorists responded strongly and favorably to the concept with little or no public information, and they intuitively knew what the FYA meant. In addition to the research that indicated a low risk of safety or operational concerns, FHWA did not anticipate any negative reactions by industry, manufacturers, or suppliers, nor perceive any adverse financial impacts if the FYA were to be widely implemented. Overall, practitioner consensus was in support of the FYA.

In 2009, the Manual on Uniform Traffic Control Devices (MUTCD) included FYA signal indication as a standard when a separate left-turn signal head is used over the left-turn lane and is operated in a protected/permissive mode or a permissive mode. The MUTCD states that a circular green signal indication shall not be used in this situation (USDOT, 2009).

Even before the 2007 FHWA memorandum, the Missouri Department of Transportation (MoDOT) began using FYA indications under an interim approval agreement with FHWA. The agency did not undertake a wholesale replacement program but rather began installing FYA for permissive movements at new signals and replacing existing circular green permissive indications with FYA when they had reached the end of their service life.

As an agency, MoDOT has been satisfied with FYA performance, and apart from a few anecdotal disapprovals, the indications seemed to be acceptable to the traveling public. With over a decade of crash data available since the beginning of FYA use in Missouri, the agency decided to objectively investigate the safety performance of the system. Additionally, they wished to have an accurate inventory of all FYA installations statewide, and a determination of the benefit-cost ratio of the signal system.

This study investigates those variables. Specifically, it will accomplish the following objectives:

- Develop an inventory of permissive turn movements designating which indication is currently in use
- Update MoDOT's Transportation Management System (TMS) inventory, including installation date by approach for flashing yellow arrows
- Conduct safety analysis of intersections with permissive flashing yellow arrow movements
- Analyze safety study results together with deployment costs to formulate benefit-cost values for the implementation of flashing yellow arrows
- If adequate data is available, develop one or more crash modification factor (CMF) values for flashing yellow arrows on Missouri travel ways
- Identify risk factors that a FYA may mitigate and associated benefit cost for deploying FYA based on these risk factors

Asset Data Collection

Virtual Survey

Before any meaningful safety analysis could begin, the research team had to determine the location of every FYA left turn signal indication in the State. MoDOT's TMS contains a fairly accurate and current database of signalized intersections, but in the 15 years since FYA use began, the fields containing specific records of those indications had lapsed. Most districts however, had either hardcopy or local electronic logs of their FYA inventories. Nevertheless, the research team examined every signalized intersection virtually to either determine FYA presence or to verify a reported presence.

The virtual examination was necessitated by the project's budget and timeline, and an existential pandemic-COVID-19—that was at its height during the data collection phase. A
field visit to each of MoDOT's 2,627 signalized intersections was simply infeasible. The examination relied primarily on MoDOT's Automatic Road Analyzer (ARAN) video logs to view each signalized intersection. This was a reliable method since ARAN footage is collected annually. If footage was missing or unusable, the research team used the Streets function of Google Maps or Google Earth to examine the intersection virtually.

There are inherent limitations in ARAN video logs. The distance interval for each frame is 0.02 miles or approximately 105 feet. With this spacing, finding a vantage point close enough to visually examine the signal head can be difficult. Each ARAN video frame is also a static image allowing for neitherpan, tilt, nor zoom. Additionally, ARAN imagery is subject to the time of day, weather, and cleanliness of the camera. This means that sometimes a sun glare may obscure the image, raindrops blur the image, or dead insect residue conceal a critical portion of the image. For these reasons, ARAN was used mostly to identify the presence of FYA given its signature 4 -section signal head.

While the majority of FYA exist on these 4-section heads, there are a few permissive only left turn movements that are controlled by 3 -section heads. As such, the research team reexamined each intersection using Google Streets. This software features dynamic photographs at approximately 30 -foot intervals. Each image allows a 360 -degree range of motion for pan and for tilt, and a 15-time zoom. Researchers relied on the presence of sign LEFT TURN YIELD ON FLASHING ARROW (R10-27a) to determine if an indication that was not illuminated in the photograph was in fact an FYA.

Attributes

The following attributes were collected per approach for each signalized intersection with an FYA:

- FYA installation date - The determination of FYA installation dates is detailed later in this report
- Number of through lanes - Through lanes were counted from an aerial view, then verified at street level
- Number of left turn lanes - Left turn lanes were counted from an aerial view, then verified at street level
- Left turn phasing - The determination of left turn phasing is detailed later in this report
- Presence of backplates - Backplates were assigned a yes/no value based on observation

Cardinal Direction Assignment

Not all roadway segments are aligned truly north-south or east-west. To align the crashes with the appropriate approaches assigned them during reporting, the research team adopted the following convention irrespective of the true bearing on Earth. The primary route of the
intersection contained in the TMS database field named [ROUTE] was used as the primary route. The direction assigned to it in that field was used as the directional alignment (e.g., US 61 S). By default, the secondary route direction was assigned as the complimentary direction to the primary route, irrespective of the directional assignment in the TMS field [CROSS_STREET].

This concept is illustrated in Figure wherein the mainline route is US 61, bearing approximately south 38 degrees east. Given its directional assignment of " S " in the database, the researchers assigned it the north-south designation. By default, the cross street was assigned the east-west direction even those though it bears approximately north 42 degrees east, and the database lists it as "S."

© 2022 Google $^{\circledR}$ Street View ${ }^{\text {TM }}$. Annotations added by Leidos.
Figure 1. Cardinal direction assignments for intersection

Operational Data Collection

Current signal phasing, as well as phasing prior to FYA installation, are critical to discerning the safety impacts of the signals themselves. Since the flashing arrow was rarely illuminated in the static photographs upon which the virtual survey was conducted, researchers developed the rules shown graphically in Figure 2 to classify the signal phasing.

Any 5-section head was considered protected-permissive, as was any 4-section head mounted in conjunction with Sign R10-27a. Three-section heads without a sign were considered protected, and 3-section heads mounted in conjunction with sign LEFT TURN YIELD ON GREEN (R10-12), LEFT TURN SIGNALYIELD ON GREEN (R10-21), or R10-27a were considered permissive.

© 2022 Leidos, Inc.
Figure 2. Phasing rules
The research team determined the signal phasing prior to FYA installation by the same set of rules shown in Figure 2. Instead of observing conditions on current video and photo logs however, they used the most recent ARAN and Google Streets prior to FYA having been installed. This was an iterative process that represented the most accurate picture of prior phasing without hardcopy phasing logs which in most cases, did not exist.

Installation Dating

A primary objective of this research was to discern the installation dates of FYA signals on all approaches of signalized intersections in the state. These dates would bring MoDOT's asset management database current as of March 2021, but they are also critical for the safety analysis of FYA in Missouri. Specifically, they demarcate the before and after periods for crash consideration.

The primary method of determining installation dates was to seek information from the districts that had previously created and subsequently maintained logs of FYA signals in their jurisdictions. Five of MoDOT's districts fell within this category. The remaining two districtsCentral and St. Louis—had only scattered records of FYA installation dates. As such, the research team developed and executed a hierarchy of procedures to determine the dates.

The first attempt involved examining the controller cabinet maintenance logs for installation dates. Given the virtual nature of the data-gathering efforts, this method-while accuraterelied on reproductions of the logs sent by district traffic professionals who were visiting the
cabinets during their regular conduct of business. This resulted in a disjointed and unreliable flow of information. Furthermore, the logs examined yielded only a few actual entries of FYA installation dates. Only six of the 115 FYA signals in the Central District were dated using this method.

The second method involved reviewing construction plans (as-built plans) available on MoDOT's TMS. Researchers checked the location of each FYA installation in the St. Louis and Central Districts and compared their locations with known as-built plans in the system. If as-built plans that contained the FYA installation were available, then the date of the signal sheet representing the intersection was recorded and noted as the installation date of the signal. This exercise yielded an additional 60 dates in the St. Louis District.

Following review of TMS as-built plans, the research team identified the specific type of 4section signal head used for FYA signals. MoDOT queried this pay item in their Site Manager software and generated a list of projects since 2007 that used that head. Upon completing the list, researchers obtained electronic copies of the as-built plans and compared them to known locations of FYA signals statewide, following the same rules for date estimation as detailed above. This procedure resulted in an additional 16 dates in the Central District, and 232 in St. Louis.

Several FYA signals were installed by permit in the St. Louis District. MoDOT officials in this district recovered electronic copies of all permit projects and applications and provided them to the research team. They in turn reviewed each permit and according to the rules above, estimated an additional 53 installation dates.

The final method of estimating FYA signal installation dates involved reviewing the annual ARAN video logs for the first appearance of the FYA signal at an intersection. ARAN was the preferred medium for this exercise since those videologs are updated annually. Once a date was estimated, the research team sought to further focus the date estimation using Google Streets photo logs. Google's updates are much more random than MoDOT's annual ARAN logs, so this method yielded better results in only about half the cases. In any case, the research team was confident that this date estimation was accurate to within one year. Only six signals in the Central District, and six signals in St. Louis were dated using this method.

Table 1 is a summary of the methodology distribution for discerning FYA signal installation dates.

Table 1. Summary of methods used to estimate FYA installation dates

District	MoDOT Reported	Cabinet Logs	TMS As-Built Plans	Queried As-Built Plans	Permit Installations	Video and Photo Logs	Total
NW	21						21
NE	13						13
KC	153						153
CD	87	6		16		6	115
SL	44		60	232	53	6	395
SW	92						92
SE	52						52
Total	462	6	60	248	53	12	841

Crash Data

The project team used crash data provided by MoDOT, in conjunction with the intersection inventory, to calculate the "before" and "after" crash statistics for each intersection. The earliest opening date (i.e., the year FYA was installed) of any leg at an intersection was used as the "construction year." Crashes in years prior to the construction year were considered "before" crashes, and crashes in years after the construction year were considered "after" crashes.

Table 2 summarizes the data requested by the research team, its availability, and its source. Three requested data elements were not available for use: signal operation, construction history, and pedestrian volumes.

Table 2. Safety analysis data summary

Requested Data Elements	Data Provided?	Data Source
Number of legs	Yes	Intersection inventory
Lane configuration	Yes	Intersection inventory
Left-turn phasing by approach	Yes	Intersection inventory
Signal operation (pretimed, coordinated, lead/lag)	No	Unavailable
AADT by approach	Yes	MoDOT TMS
Speed limit by approach	Yes	MoDOT TMS
Opening date	Yes	Intersection inventory
Number of total and left turn crashes before and after FYA installation	Yes	MoDOT crash data
Construction history	No	Unavailable
Pedestrian volumes	Yes	MoDOT TMS
Urban/rural land use		

MoDOT queried their crash data repository in TMS and provided the research team with a comprehensive data set spanning the years from 2007 to 2020 . Given the desired 3 -year before and after periods, only signals installed between the years 2010 and 2017 were considered. MoDOT also conducted a second query after more Central and St. Louis Districts FYA date, and off-system volume information became available.

Site Selection

Sample Sizes

The project team reviewed the crash sites provided by MoDOT to identify candidates for the simple before-after safety analysis. To be eligible for the simple safety analysis, sites must have had three years of before data and three years of after. Sites were removed from consideration for the following reasons:

- Unusual geometry/configuration (e.g., five or more legs)
- A left turn movement was previously not allowed (prohibited, no receiving leg, or no intersection in before condition) or signalized
- Construction year of 2018 through 2021 (i.e., less than three years of after data available)

Table 3 and Table 4 summarize the potential sample sizes of different site groupings, in terms of the number of intersections, approaches with FYA installations, and number of crashes. Crash data was broken-out by total and left turn crashes at the intersection level, and the project team investigated the potential accuracy of assigning crashes to specific approaches.

Table 3. Sites and crashes by number of legs, land-use context, and FYA approach phasing ${ }^{1}$

Variable	Number of Intersections	Number of FYA Approaches	Total Crashes (Before)	Total Crashes (After)	Left Turn Crashes (Before)	Left Turn Crashes (After)
Number of Legs						
3	62	62	7,849	4,298	1,670	1,054
4	204	560	26,629	13,481	5,111	2,766
Total	266	622	34,478	17,779	6,781	3,820
Land-use Context						
Urban	228	536	30,015	15,839	5,822	3,334
Rural	38	86	4,463	1,940	959	486
Total	266	622	34,478	17,779	6,781	3,820

Left Turn Phasing of FYA Approach(es) (Before to After) ${ }^{2}$

Permissive to Permissive	8	15	971	735	168	123
Permissive to Protected- Permissive	7					
Protected- Permissive to Protected- Permissive	14	678	279	150	70	
Protected to Permissive	144	303	18,730	10,404	3,816	2,314
Protected to Protected- Permissive	2	3	900	243	181	49
Total	42	$\mathbf{7}$				

${ }^{1}$ Final sample sizes are subject to change as further analysis is conducted.
${ }^{2}$ Only intersections for which the phasing across all approaches with FYA is consistent are included in this section.

Table 4. FYA approaches by left turn phasing

Left Turn Phasing	Before Phasing Number of Approaches	After Phasing Number of Approaches
Permissive	110	71
Protected-Permissive	403	551
Protected	109	0
Total	622	622

There were 266 intersections with 622 approaches with FYA signals in the after condition that may be used in the simple safety analysis. These sample sizes were subject to increase had the
more detailed crash modification factor (CMF) development task been conducted, because it would not require three years of after data.

These intersections are primarily in urban areas (86 percent), with 73 percent of FYA approaches operating in protected-permissive mode in both the before and after condition, and 19 percent of approaches changing from protected to protected-permissive phasing. Only two intersections, corresponding to three approaches, changed from protected to permissive phasing.

Research Approach

Based on the available data and sample sizes noted in the previous sections, the research team decided upon the following methodology:

- Investigate if left turn crashes can reasonably be assigned to individual approaches using the provided crash data
- Perform a simple before/after crash analysis using a standard of three years of before and three years of after data for the following crash types (with breakouts by all severities, fatal/injury crashes only, and fatal/suspected serious injury crashes only and groupings by urban/rural context, number of legs, and left-turn phasing (where it is consistent)).
- Total crash rate (i.e., all crash types)
- Number of left-turn crashes per year
- Total number of crashes per year
- Investigate whether there would be sufficient data for reference sites for developing one or more CMFs.

Basic Safety Analysis

The project team has used the data collected and described in the previous section to complete a simple before-after safety analysis of FYA installations. This basic safety analysis compares observed crashes in the before and after periods to assess the safety effectiveness of FYAs. As such, it assumes that the change in the safety performance from the before to the after period is solely attributable to installing FYA control. This assumption is likely not accurate and other factors (e.g., driver behavior, weather, changes in traffic volumes, and other time trends), may also influence safety performance. However, this analysis may provide an indication of the general trends of safety performance related to FYA installation in Missouri. Comparing the results of this analysis to other similar studies provides additional confidence in its results.

Analysis Process

This basic safety analysis considers safety performance at the individual approach and intersection-wide levels. The approach-level analysis considers only intersection approaches with FYA installations and likely provides a more precise estimate of the safety effect of the
change. However, the project team was not able to reliably assign traffic volumes at the approach level within the task's available resources, so an intersection-levelanalysis was also conducted to account for the potential trends in traffic volumes.

Crash Assignment

The project team assigned crashes to individual approaches using crash data provided by MoDOT. The project team first identified left-turn opposite-direction (LTOD) crashes within the crash database. These are the crashes most likely to be influenced by FYA installations. They were also the only crash types the project team was able to reliably assign to an individual approach without reviewing crash narratives, which is beyond the current scope of the project. The LTOD crashes were then assigned to individual approaches based on the direction of travel of the left-turning vehicle involved in the crash.

Analysis Parameters

The project team used the following general parameters in conducting the safety analysis:

- Time period - Crash data from a maximum of 3 years before and 3 years after FYA installation is used. The installation year is excluded. Sites with less than 3 years after data are still included, so long as there is one complete calendar year of crash data available (i.e., the FYA must have been installed in 2017 or earlier). The relatively narrow before-after period helps limit the influence of externaltime-related trends (e.g., changes in traffic volumes/patterns, driver behavior, vehicle fleet mix).
- Crash types - This analysis focuses on left-turn opposite-direction (LTOD) crashes. These are the crashes most likely to be influenced by FYA installations. Pedestrian crashes are also reviewed.
- Before-after left-turn phasing - The left-turn phasing before and after FYA installation can have a significant effect on safety performance. Therefore, all analyses are conducted by grouping together approaches, or intersections, with similar before-after left-turn phasing patterns (e.g., all approaches where the left-turn phasing was protected-permissive in the before and after periods are grouped together).

Performance Measures and Methodology

The following metrics are calculated for each analysis grouping:

- Crash frequency - Calculated as crashes/year in the before and after periods. This information is shown to provide contextas to the magnitude of change seen and analyzed.
- Crash Modification Factor (CMF) - Calculated according to the metrics outlined in the industry standard reference Observational Before-After Studies in Road Safety (Hauer,
1997). The accompanying 95 percent confidence interval is also calculated. Applying this methodology here is more statistically rigorous than simply dividing the after-crash frequency by the before crash frequency; however, it is not as rigorous as the Empirical Bayes (EB)-based analysis described later in this memorandum, which is the preferred method for calculating CMFs.

Results

The following sections summarize the results of the intersection and approach-level analyses.

Approach-Level Analyses

Most of the analyses conducted for this project are at the approach level. This provides for a greater sample size (i.e., there are more approaches than intersections), as well as a more precise examination of the safety performance of FYA installations with respect to LTOD crashes. The analyses are conducted according to the parameters previously described and are summarized according to the following factors

- All locations
- Urban vs. rural locations
- Number of through lanes crossed by left-turning traffic
- Speed limit of opposing traffic

The project team also considered the number of left-turning lanes on the approach with FYA. According to MoDOT policy however, there was only one left-turning lane on all approaches with FYA installations.

All Locations

Table 5 summarizes the number of LTOD crashes by severity across all approaches in the database.

Table 5. LTOD crashes by severity (all locations)

Before-After Phasing ${ }^{1}$	n^{2}	LTOD Crashes by Severity									
		Before Period					After Period				
		K	A	B	C	0	K	A	B	C	0
PM to PM	64	1	0	0	16	33	0	0	1	5	19
PM to PP	69	0	0	0	16	28	0	0	4	16	27
PP to PM	12	0	0	0	0	1	0	0	0	1	0
PP to PP	476	2	0	33	333	505	0	5	21	260	408
PT to PM	5	0	0	0	0	1	0	0	0	0	4
PT to PP	116	0	0	2	24	30	0	1	7	64	105

${ }^{1}$ PM = permissive; PP = protected-permissive; $\mathrm{PT}=$ protected
${ }^{2} n=$ number of approaches
The number of fatal and injury A and B crashes is relatively small across all phasing pairs and time periods. As a result, the analysis is completed for fatal and injury crashes combined (i.e., KABC crashes) and property damage only (O) crashes. These combinations provide a look at the influence of FYA installations on crashes of different severity levels.

Table 6 summarizes LTOD crash frequency by left-turn phasing type across all locations.

Table 6. LTOD crash frequency by left-turn phasing (all locations)

Phasing ${ }^{1}$	LTOD Crashes									
	Before Period					After Period				
	KABC	0	Years	KABC Crashes/ Year	Crashes/ Year	KABC	0	Years	KABC Crashes /Year	$\begin{gathered} 0 \\ \text { Crashes/ } \\ \text { Year } \end{gathered}$
PM	33	61	399	0.08	0.15	7	23	233	0.03	0.10
PP	368	506	1464	0.25	0.35	378	540	1842	0.21	0.29
PT	26	31	363	0.07	0.09			N/		

${ }^{1}$ PM = permissive; $\mathrm{PP}=$ protected-permissive; PT = protected
LTOD crash frequency is highest at locations with protected-permissive phasing, followed by locations with permissive phasing. Locations with protected-only left-turn phasing have the lowest LTOD crash frequency. Crash frequencies are about 16 percent- 63 percent lower after FYA installation, not accounting for any change in phasing across the before and after periods. The subsequent analyses will further explore the effects of different factors, including beforeafter phasing combinations, on FYA safety performance.

Table 7 summarizes the results of the before-after analysis across all approaches in the database. The table also provides 95% confidence intervals, in accordance with typical industry practice, to assess the statistical significance of the results.

Table 7. Before-after analysis results (all locations)

BeforeAfter Phasing ${ }^{1}$	n^{2}	Before Period			After Period			CMF	95\% Confidence Interval
		LTOD Crashes	Years	Crash Frequency ${ }^{3}$	LTOD Crashes	Years	Crash Frequency ${ }^{3}$		
KABCCrashes									
PM to PM	64	17	192	0.09	6	182	0.03	0.35	0.10-0.75
PM to PP	69	16	207	0.08	20	189	0.11	1.29	0.59-2.26
PP to PM	12	0	36	0.00	1	36	0.03	N/A	N/A
PP to PP	476	368	1428	0.26	286	1322	0.22	0.84	0.71-0.97
PT to PM	5	0	15	0.00	0	15	0.00	N/A	N/A
PT to PP	116	26	348	0.07	72	331	0.22	2.80	1.69-4.19
0 Crashes									
PM to PM	64	33	192	0.17	19	182	0.10	0.59	0.31-0.97
PM to PP	69	28	207	0.14	27	189	0.14	1.02	0.55-1.63
PP to PM	12	1	36	0.03	0	36	0.00	N/A	N/A
PP to PP	476	505	1428	0.35	408	1322	0.31	0.87	0.76-0.99
PT to PM	5	1	15	0.07	4	15	0.27	2.00	0.02-8.13
PT to PP	116	30	348	0.09	105	331	0.32	3.56	2.27-5.14

${ }^{1}$ PM = permissive; PP = protected-permissive; PT = protected
${ }^{2} n=$ number of approaches
${ }^{3}$ crashes/year
Bold cells indicate CMFs for which the 95% confidence interval does not cross 1.0. Italics indicate CMFs for which the 95\% confidence interval does not cross 1.0; however, the sample size is relatively small.

Left-turn opposite-direction crashes decreased by about 13 percent (O crashes) to 16 percent (KABC) after FYA was installed at approaches with protected-permissive phasing in the before and after periods. They also appear to have decreased by a greater magnitude at locations where permissive phasing was present in the before and after periods. However, the sample size is relatively small at these locations.

Conversely, LTOD crashes increased at locations where the signal phasing was changed from protected only left-turns to protected-permissive left-turns. Based on the analysis results presented in the table and the existing literature, this increase in crashes appears to be related to the change in left-turn phasing (i.e., installing a FYA does not appear to make up for the increase in crashes that results from adding the permissive phase to an approach that did not previously have one).

Results were inconclusive for otherphasing combinations due to the small sample sizes in the database.

Urban Intersections

Table 8 summarizes the results of the before-after analysis across approaches at urban intersections in the database.

Table 8. Before-after analysis results (urban intersections)

BeforeAfter Phasing ${ }^{1}$	n^{2}	Before Period			After Period			CMF	95\% Confidence Interval
		LTOD Crashes	Years	Crash Frequency ${ }^{3}$	LTOD Crashes	Years	Crash Frequency ${ }^{3}$		
KABC Crashes									
PM to PM	60	16	180	0.09	6	170	0.04	0.37	0.11-0.80
PM to PP	57	12	171	0.07	15	155	0.10	1.27	0.5-2.41
PP to PM	12	0	36	0.00	1	36	0.03	N/A	N/A
PP to PP	413	357	1239	0.29	276	1152	0.24	0.83	0.70-0.96
PT to PM	2	0	6	0.00	0	6	0.00	N/A	N/A
PT to PP	95	26	285	0.09	61	271	0.23	2.38	1.41-3.58
O Crashes									
PM to PM	60	33	180	0.18	19	170	0.11	0.59	0.31-0.97
PM to PP	57	22	171	0.13	21	155	0.14	1.01	0.5-1.69
PP to PM	12	1	36	0.03	0	36	0.00	N/A	N/A
PP to PP	413	483	1239	0.39	392	1152	0.34	0.87	0.76-0.99
PT to PM	2	1	6	0.17	4	6	0.67	2.00	0.02-8.13
PT to PP	95	30	285	0.11	99	271	0.37	3.36	2.13-4.86

${ }^{1} \mathrm{PM}=$ permissive; $\mathrm{PP}=$ protected-permissive; $\mathrm{PT}=$ protected
${ }^{2} n=$ number of approaches
${ }^{3}$ crashes/year
Bold cells indicate CMFs for which the 95\% confidence interval does not cross 1.0. Italics indicate CMFs for which the 95\% confidence interval does not cross 1.0; however, the sample size is relatively small.

Urban locations make up approximately 86 percent of the sites in the database. As a result, the findings at urban locations are similar to those presented for all locations. Left-turn oppositedirection crashes decreased by about 13 percent (O crashes) to 17 percent (fatal and injury crashes) after FYA was installed at approaches with protected-permissive phasing in the before and after periods. They also appear to have decreased by a greater magnitude at locations where permissive phasing was present in the before and after periods. However, the sample size is relatively small at these locations.

Conversely, LTOD crashes increased at locations where the signal phasing was changed from protected only left-turns to protected-permissive left-turns. Results were inconclusive for other phasing combinations due to the small sample sizes in the database.

Rural Intersections
Table 9 summarizes the results of the before-after analysis across approaches at urban intersections in the database.

Table 9. Before-after analysis results (rural intersections)

Before- After Phasing ${ }^{1}$	n^{2}	Before Period			After Period			CMF	95\% Confidence Interval
		$\begin{array}{\|l\|} \hline \text { LTOD } \\ \text { Crashes } \end{array}$	Years	Crash Frequency ${ }^{3}$	$\begin{aligned} & \hline \text { LTOD } \\ & \text { Crashes } \end{aligned}$	Years	Crash Frequency ${ }^{3}$		
KABC Crashes									
PM to PM	4	1	12	0.08	0	12	0.00	N/A	N/A
PM to PP	12	4	36	0.11	5	34	0.15	1.06	0.15-2.84
PP to PM	0	0	0	0.00	0	0	0.00	N/A	N/A
PP to PP	63	11	189	0.06	10	170	0.06	0.93	0.31-1.87
PT to PM	3	0	9	0.00	0	9	0.00	N/A	N/A
PT to PP	21	0	63	0	11	60	0.18	N/A	N/A
0 Crashes									
PM to PM	4	0	12	0	0	12	0.00	N/A	N/A
PM to PP	12	6	36	0.17	6	34	0.18	0.91	0.19-2.19
PP to PM	0	0	0	0.00	0	0	0.00	N/A	N/A
PP to PP	63	22	189	0.12	16	170	0.09	0.77	0.36-1.35
PT to PM	3	0	9	0.00	0	9	0.00	N/A	N/A
PT to PP	21	0	63	0	6	60	0.10	N/A	N/A

${ }^{1} \mathrm{PM}=$ permissive; $\mathrm{PP}=$ protected-permissive; $\mathrm{PT}=$ protected
${ }^{2} n=$ number of approaches
${ }^{3}$ crashes/year
The sample size of rural intersection approaches is relatively small. For four of the six possible phasing combinations do not have any crashes in the before period. Left-turn oppositedirection crashes decreased by about 23 percent (O crashes) to 7 percent (fatal and injury crashes) after FYA was installed at approaches with protected-permissive phasing in the before and after periods. The 95 percent confidence intervals for these results do cross 1.0, indicating the results are not statistically significant at that level; however, the trends are similar to what was seen in the comprehensive dataset.

The number of opposing through lanes crossed by left-turning traffic influences the number of potential conflict points a left-turning vehicle must cross to complete its maneuver. The project team examined the safety performance of approaches based on the number of through lanes crossed. Results are shown in this section for left-turns crossing either one or two lanes. There were only three approaches that crossed three opposing through lanes, so results for this analysis are not included here due to the small sample size.

One Opposing Through Lane

Table 10 summarizes the results of the before-after analysis of approaches where left-turning vehicles cross only one opposing through lane.

Table 10. Before-after analysis results (one opposing through lane)

BeforeAfter Phasing ${ }^{1}$	n^{2}	Before Period			After Period			CMF	
		LTOD Crashes	Years	Crash Frequency ${ }^{3}$	$\begin{aligned} & \text { LTOD } \\ & \text { Crashes } \end{aligned}$	Years	Crash Frequency ${ }^{3}$		
KABC Crashes									
PM to PM	45	7	135	0.05	4	128	0.03	0.53	0.09-1.34
PM to PP	41	9	123	0.07	6	118	0.05	0.63	0.16-1.42
PP to PM	9	0	27	0.00	1	27	0.04	N/A	N/A
PP to PP	172	39	516	0.08	34	462	0.07	0.95	0.56-1.43
PT to PM	4	0	12	0.00	0	12	0.00	N/A	N/A
PT to PP	28	3	84	0.04	10	81	0.12	2.59	0.39-6.85
0 Crashes									
PM to PM	45	23	135	0.17	16	128	0.13	0.70	0.33-1.22
PM to PP	41	19	123	0.15	8	118	0.07	0.42	0.15-0.83
PP to PM	9	0	27	0.00	0	27	0.00	N/A	N/A
PP to PP	172	79	516	0.15	50	462	0.11	0.70	0.47-0.97
PT to PM	4	1	12	0.08	1	12	0.08	0.50	0.00-2.51
PT to PP	28	1	84	0.01	5	81	0.06	2.59	$\begin{aligned} & 0.03- \\ & 10.35 \\ & \hline \end{aligned}$

${ }^{1} \mathrm{PM}=$ permissive; $\mathrm{PP}=$ protected-permissive; $\mathrm{PT}=$ protected
${ }^{2} n=$ number of approaches
${ }^{3}$ crashes/year
Bold cells indicate CMFs for which the 95% confidence interval does not cross 1.0. Italics indicate CMFs for which the 95% confidence interval does not cross 1.0; however, the sample size is relatively small.

The crash frequency at sites where left-turning vehicles only cross one opposing through lane is relatively low compared to all sites (e.g., the before crash frequency for O crashes is about 0.14 crashes/year at these sites, compared to about 0.27 crashes/year at all locations). As a result,
while similar trends are seen as compared to all results, many of the resulting CMFs cross 1.0 due to the small sample size.

Left-turn opposite-direction O crashes decreased by about 30 percent after FYA was installed at approaches with protected-permissive phasing in the before and after period. This is a greater effect than was seen at all sites (i.e., 13 percent). However, the confidence interval overlaps the CMF for all sites. The effect on fatal and injury crashes at these same sites is less (i.e., about 5 percent reduction compared to 16 percent reduction at all sites); however, the confidence interval includes the CMF for all sites and has a wide range due to the small sample size.

Two Opposing Through Lanes

Table 11 summarizes the results of the before-after analysis of approaches where left-turning vehicles cross two opposing through lanes.

Table 11. Before-after analysis results (two opposing through lanes)

BeforeAfter Phasing ${ }^{1}$	n^{2}	Before Period			After Period			CMF	95\% Confidence Interval
		LTOD Crashes	Years	Crash Frequency ${ }^{3}$	LTOD Crashes	Years	Crash Frequency ${ }^{3}$		
KABCCrashes									
PM to PM	17	10	51	0.20	2	48	0.04	0.19	0.02-0.58
PM to PP	28	7	84	0.08	14	71	0.20	2.07	0.64-4.33
PP to PM	3	0	9	0.00	0	9	0.00	N/A	N/A
PP to PP	300	324	900	0.36	250	848	0.29	0.82	0.69-0.96
PT to PM	1	0	3	0.00	0	3	0.00	N/A	N/A
PT to PP	86	21	258	0.08	62	244	0.25	2.98	1.69-4.63
0 Crashes									
PM to PM	17	10	51	0.20	3	48	0.06	0.29	0.04-0.77
PM to PP	28	9	84	0.11	19	71	0.27	2.25	0.83-4.35
PP to PM	3	1	9	0.11	0	9	0.00	N/A	N/A
PP to PP	300	418	900	0.46	349	848	0.41	0.88	0.76-1.01
PT to PM	1	0	3	0.00	3	3	1.00	N/A	N/A
PT to PP	86	29	258	0.11	99	244	0.41	3.49	2.2-5.07

${ }^{1} \mathrm{PM}=$ permissive; $\mathrm{PP}=$ protected-permissive; $\mathrm{PT}=$ protected
${ }^{2} n=$ number of approaches
${ }^{3}$ crashes/year
Bold cells indicate CMFs for which the 95% confidence interval does not cross 1.0. Italics indicate CMFs for which the 95\% confidence interval does not cross 1.0; however, the sample size is relatively small.

Results for these locations are similar to what was seen at all locations. Left-turn oppositedirection crashes decreased by about 12 percent (O crashes) to 18 percent (fatal and injury crashes) after FYA was installed at approaches with protected-permissive phasing in the before
and after periods. They also appear to have decreased by a greater magnitude at locations where permissive phasing was present in the before and after periods. However, the sample size is relatively small at these locations.

Conversely, LTOD crashes increased at locations where the signal phasing was changed from protected only left-turns to protected-permissive left-turns. Results were inconclusive for other phasing combinations due to the small sample sizes in the database.

Effect of Speed Limit

The project team also evaluated how the safety performance of FYA installations may vary based on the posted speed limit of the approach. To provide the largest possible sample size and minimize confounding factors related to phasing changes in the before and after periods, this analysis considers only sites for which the left-turn phasing is protected-permissive in the before and after periods. Table 12 summarizes the results of this analysis.

Table 12. Before-after analysis results based on posted speed limit

Posted Speed Limit 1	n^{2}	Before Period			After Period			CMF	95\% Confidence Interval
		LTOD Crashes	Years	Crash Frequency ${ }^{3}$	$\begin{aligned} & \hline \text { LTOD } \\ & \text { Crashes } \end{aligned}$	Years	Crash Frequency ${ }^{3}$		
KABC Crashes									
$\begin{aligned} & \text { 20-30 } \\ & \text { MPH } \end{aligned}$	34	7	102	0.07	2	90	0.02	0.28	0.02-0.87
$\begin{aligned} & 35-40 \\ & \text { MPH } \end{aligned}$	196	169	588	0.29	138	541	0.26	0.88	0.70-1.09
$\begin{aligned} & \text { 45-50 } \\ & \text { MPH } \end{aligned}$	97	94	291	0.32	75	284	0.26	0.81	0.58-1.07
$55+$ MPH	15	3	45	0.07	3	40	0.08	0.84	0.06-2.63
O Crashes									
$\begin{aligned} & 20-30 \\ & \mathrm{MPH} \\ & \hline \end{aligned}$	34	15	102	0.15	9	90	0.10	0.64	0.22-1.26
$\begin{aligned} & 35-40 \\ & \text { MPH } \end{aligned}$	196	260	588	0.44	206	541	0.38	0.86	0.71-1.02
$\begin{array}{\|l\|} \hline 45-50 \\ \text { MPH } \\ \hline \end{array}$	97	117	291	0.40	95	284	0.33	0.82	0.62-1.06
$55+\mathrm{MPH}$	15	2	45	0.04	4	40	0.10	1.50	0.08-4.90

${ }^{1}$ Left-turn signal phasing is protected-permissive in the before and after periods for all approaches
${ }^{2} n=$ number of approaches
${ }^{3}$ crashes/year
Bold cells indicate CMFs for which the 95\% confidence interval does not cross 1.0. Italics indicate CMFs for which the 95\% confidence interval does not cross 1.0; however, the sample size is relatively small.

For most posted speed limits, the installation of FYA left-turn phasing is correlated with a reduction in crashes of about 12 percent to 19 percent. There are a few instances higher or lower than this, but they are based on extremely small sample sizes. There is no clear trend in the results based on the posted speed limit.

Intersection-Level Analyses

Intersection-levelevaluations were completed for pedestrian crashes, as well as LTOD crashes.

LTOD Crashes

As noted previously, the project team was not able to reliably assign traffic volumes to approaches within the project scope. Therefore, the project team conducted intersection-level analyses to examine the safety performance of FYA installations while accounting for traffic volumes. For this analysis, only intersections where all approaches with FYA had the same phasing in the before and after periods were considered. It also only considers LTOD crashes on approaches with FYA. Table 13 summarizes the results of this analysis.

The following limitations of the analysis should be kept in mind when reviewing the results in Table 13:

- The AADT volumes used in this analysis are for entire approaches and do not consider specific changes in left-turning volumes.

Table 13. Before-after analysis results for intersections

BeforeAfter Phasing ${ }^{1}$	n^{2}	Before Period			After Period			CMF	95\% Confidence Interval
		LTOD Crashes ${ }^{3}$	AADT	Crash Frequency ${ }^{4}$	LTOD Crashes ${ }^{3}$	AADT	Crash Frequency ${ }^{4}$		
KABC Crashes									
PM to PM	9	9	584,271	0.33	6	568,436	0.23	0.64	$\begin{gathered} \hline 0.15- \\ 1.45 \\ \hline \end{gathered}$
PM to PP	12	8	540,636	0.22	6	432,580	0.21	0.97	$\begin{gathered} \hline 0.18- \\ 2.41 \\ \hline \end{gathered}$
PP to PM	0	0	0	0	0	0	0.00	N/A	N/A
PP to PP	179	356	12,725,240	0.66	261	11,767,892	0.53	0.86	$\begin{gathered} \hline 0.72- \\ 1.01 \end{gathered}$
PT to PM	2	0	52,096	0	2	53,844	0.33	N/A	N/A
PT to PP	47	21	2,807,012	0.15	64	2,677,299	0.48	3.19	$\begin{gathered} 1.78- \\ 5.02 \end{gathered}$
O Crashes									

BeforeAfter Phasing ${ }^{1}$	n^{2}	Before Period			After Period			CMF	95\% Confidence Interval
		LTOD Crashes ${ }^{3}$	AADT	Crash Frequency ${ }^{4}$	LTOD Crashes ${ }^{3}$	AADT	Crash Frequency ${ }^{4}$		
PM to PM	9	10	584,271	0.37	6	568,436	0.23	0.57	$\begin{gathered} 0.14- \\ 1.27 \end{gathered}$
PM to PP	12	15	540,636	0.42	3	432,580	0.10	0.24	$\begin{gathered} 0.04- \\ 0.60 \end{gathered}$
PP to PM	0	0	0	0	0	0	0.00	N/A	N/A
PP to PP	179	494	12,725,240	0.92	375	11,767,892	0.76	0.82	$\begin{gathered} 0.66-1 \\ 0.99 \end{gathered}$
PT to PM	2	0	52,096	0	2	53,844	0.33	N/A	N/A
PT to PP	47	43	2,807,012	0.3	98	2,677,299	0.73	2.33	$\begin{array}{r} 1.53- \\ 3.30 \\ \hline \end{array}$

${ }^{1} \mathrm{PM}=$ permissive; $\mathrm{PP}=$ protected-permissive; $\mathrm{PT}=$ protected
${ }^{2} \mathrm{n}$ = number of intersections
${ }^{3}$ only includes crashes on approaches with FYA
${ }^{4}$ crashes/year
Bold cells indicate CMFs for which the 95% confidence interval does not cross 1.0. Italics indicate CMFs for which the 95% confidence interval does not cross 1.0; however, the sample size is relatively small.

Factoring in traffic volumes, the results for intersections are similar to what was seen at the approach level, with LTOD crashes decreasing when phasing was protected-permissive in the before and after periods but increasing when the phasing is converted from protected to protected-permissive. For all other sites, the sample sizes are small.

Pedestrian Crashes

One objective of the project was to evaluate whether FYA installation affected pedestrian crashes. Table 14 summarizes the available pedestrian crash data. Similar to the previous LTOD crashes analysis, only intersections where all approaches with FYA had the same phasing in the before and after periods were considered. The table includes all pedestrian crashes at these intersections involving a left-turning vehicle from one of the approaches with FYA signal operation.

Table 14. Pedestrian crashes

Before- After Phasing ${ }^{\mathbf{1}}$	$\mathbf{n n}^{\mathbf{2}}$	Pedestrian Crashes Perore	
	9	0	After Period
PM to PP	12	0	0
PP to PM	0	0	0
PP to PP	179	3	2

Before- After Phasing ${ }^{\mathbf{1}}$		$\mathbf{n}^{\mathbf{2}}$	Pedestrian Crashes Before Period		After Period
PT to PM	2	0	0		
PT to PP	47	0	0		

${ }^{1} \mathrm{PM}=$ permissive; $\mathrm{PP}=$ protected-permissive; $\mathrm{PT}=$ protected
${ }^{2} n=$ number of intersections
There were only five reported pedestrian crashes that fit the parameters of this analysis. All five crashes took place at locations with protected-permissive phasing in the before and after periods. The number of crashes decreased from three crashes in the before period to two crashes in the after period. However, this sample size is too small to draw any meaningful conclusions from. Previous work has indicated that the FYA operation may not significantly affect safety performance with respect to pedestrian crashes (Van Houten, et al., 2012).

Summary

Below are the key findings from this analysis:

- LTOD crash frequency is highest at locations with protected-permissive phasing, followed by locations with permissive phasing. Locations with protected-only left-turn phasing have the lowest LTOD crash frequency.
- Holding left-turn signal phasing constant, installing FYA operation for left-turns appears to reduce LTOD crashes.
- At sites where the left-turn phasing is protected-permissive in the before and after periods, a 13 percent-18 percent reduction in O LTOD and a 14 percent- 16 percent reduction in KABC LTOD crashes could be expected (based on the CMFs in Table 7 and Table 13).
- This trend is present across urban and rural locations, approaches where the left-turning vehicle must cross 1 or 2 opposing lanes, and through a range of speed limits. The magnitude of the effect varies across situations, especially when sample sizes are small, but the overall trend is generally consistent.
- A reduction in LTOD crashes could also likely be expected when the left-turn phasing is permissive only; however, the sample size of some of these instances is small and results vary widely.
- The safety benefit of FYA phasing is not significant enough to overcome the negative effect of converting an approach from protected-only left-turn phasing to protectedpermissive or permissive phasing operation.
- There were not enough reported pedestrian crashes to conduct a statistically significant before-after analysis.

Table 15 compares the results in Table 13 to previous research. Note that the otherstudies shown in the table were typically conducted using an EB or other more rigorous methodology. They often are also looking at all left-turn crashes, and not just LTOD crashes.

Table 15. CMFs from past studies compared to this study

Study	CMFs			
	PP to PP	PT to PP	PM to PP	PM to PM
Schattler, et al. (2016)	0.62 (KABCO)	N/A		
Simpson and Troy $(2015)^{1}$	$\begin{gathered} 0.84 \text { (KABCO)/ } \\ 0.75 \text { (KABC) } \\ \hline \end{gathered}$	$\begin{gathered} 3.68 \text { (KABCO)/ } \\ 4.78 \text { (KABC) } \end{gathered}$	$\begin{gathered} 0.60(K A B C O) / \\ 0.60(K A B C) \end{gathered}$	$\begin{aligned} & 0.50 \text { (KABCO)/ } \\ & 0.35 \text { (KABC) } \end{aligned}$
Shea and Medina (2018) ${ }^{1}$	0.98 (KABCO)	N/A		
Srinivasan, et al. (2020)	$\begin{gathered} 0.51-0.85 \\ (\mathrm{KABCO})^{2} \end{gathered}$	N/A		
Srinivasan, et al. (2011) ${ }^{1}$	0.81 (КАВСО)	2.24 (KABCO)	0.64 (КАВСО)	N/A
This Study	$\begin{gathered} 0.86(\mathrm{KABC}) / \\ 0.82(\mathrm{O}) \\ \hline \end{gathered}$	$\begin{gathered} 3.19(\mathrm{KABC}) / \\ 2.33(\mathrm{O}) \\ \hline \end{gathered}$	$\begin{gathered} 0.97(\mathrm{KABC}) / \\ 0.24(\mathrm{O}) \\ \hline \end{gathered}$	$\begin{gathered} 0.64(\mathrm{KABC}) / \\ 0.57(\mathrm{O}) \\ \hline \end{gathered}$

${ }^{1}$ CMFs are for all left-turn crashes, not just LTOD crashes
${ }^{2}$ CMFs differ based on number of legs at intersection and number of approaches FYA installed on.
The findings from this study are generally consistent with those from other studies in terms of the overall magnitude and direction of the resulting CMFs. This is particularly true for locations where left-turn phasing remained protected-permissive across both periods or where it changed from protected only to protected-permissive phasing. These are the two groups with the largest sample sizes in this study. The results for the permissive to protected-permissive phasing pairing are the most different when comparing this study to others; however, the sample size in all studies, including this one, were relatively small.

Economic Analysis

The project team evaluated the benefit-cost ratio (B/C) of installing FYA. This was completed following guidance in FHWA's Highway Safety Benefit-Cost Analysis Guide (Lawrence, et al., 2018) and provided by MoDOT. This analysis was completed using the following parameters:

- Crash costs - Crash costs were provided by MoDOT as follows:
- KABC Crashes - $\$ 466,373 /$ crash
- O Crashes - \$10,500/crash
- FYA Installation cost - $\$ 2,819.43 /$ approach (provided by MoDOT)
- Lifespan of FYA - 10 years (provided by MoDOT)
- Discount Rate - 7 percent (taken from USDOT guidance for RAISE grants (USDOT, 2022))
- Traffic Volume \& Other Trends - This analysis assumes that traffic volumes, and other trends that may affect crashes (e.g., changes in vehicle fleet, weather, driver behavior)
are constant throughout the course of the 10-year analysis period and, thus, the resulting crash reduction is the same across all years.

The results of this analysis are shown in Table 16. Note that the analysis was only conducted for before-after phasing pairs for which a CMF was available in Table 13. This analysis also only considers safety benefits and does not consider other potential benefits (e.g., changes in delay).

Table 16. Benefit-cost analysis results

Before- After Phasing ${ }^{1}$	Before Period LTOD Crashes/Year ${ }^{2}$		CMFs ${ }^{3}$		Crash Reduction (Crashes/Year)		Lifespan Benefit ${ }^{4}$	B/C
	KABC	0	KABC	0	KABC	0		
PM to PM	0.089	0.17	0.64	0.57	0.032	0.074	\$109,860.44	38.97
PM to PP	0.077	0.14	0.97	0.24	0.0023	0.10	\$15,177.01	5.38
PP to PP	0.26	0.35	0.86	0.82	0.036	0.064	\$122,873.27	43.58
PT to PP	0.075	0.086	3.19	2.33	-0.16	-0.11	\$(544,412.92)	-193.09

${ }^{1}$ PM = permissive; $\mathrm{PP}=$ protected-permissive; PT = protected
${ }^{2}$ Calculated from Table 7
${ }^{3}$ Taken from Table 13
"Attachment " A " includes the annual benefit calculated for each before-after phasing pair
Italicized text indicates CMF used in B/C calculations is based on a small sample size and the resulting confidence intervals vary widely
This analysis estimates that the lifecycle benefits of installing FYA on an intersection approach are expected to be approximately 5 to 44 times greater than the installation cost, assuming that the phasing is not changed from protected only left-turn phasing. As previously noted, changing from protected-only left-turn phasing to some type of permissive phasing is expected to result in an increase in crashes, and thus a negative benefit.

These results are slightly lower than the results of the benefit-cost evaluation found in FHWA's Safety Evaluation of Flashing Yellow Arrow at Signalized Intersections (Srinivasan, et al., 2020). This study estimated benefit-cost ratios from about 56:1 to 84:1 for sites where the phasing is protected-permissive in the before and after periods and 89:1 when the phasing was permissive in the before and after periods.

Additional Analysis Viability Assessment

One objective of this project was to assess whether a more rigorous EB-based before-after study should be completed. An EB-based before-study could provide more accurate CMFs than
those summarized in the previous tables, which are based on a simple before-after study. Completing an EB-based before-afterstudy requires building a database of treatment sites (i.e., the sites with FYA analyzed in this memorandum) and reference sites (i.e., sites with similar characteristics and signal phasing operations, but without FYA indication). It would also require being able to assign traffic volumes to individual approaches at all treatment and reference sites. This work is beyond the resources currently available to this project.

The project team's understanding is that the primary goal of this work was to determine whether FYA installation in Missouri has had a safety benefit. As previously stated, holding leftturn signal phasing constant (or at least not converting a protected phase to any kind of permissive phasing), installing FYA operation for left-turns appeared to have reduced LTOD crashes in Missouri. Further, Table 15 shows that the findings from this study are generally consistent with those from other studies in terms of the overall magnitude and direction of the resulting CMFs. Given this consistency with previous work, completing an EB-based beforeafter study does not appear to be necessary to determine whether there is a safety benefit to FYA installation in Missouri. Such an analysis could still be useful for developing a more accurate CMF for economic evaluation and project prioritization. This summary was reviewed with MoDOT staff in a meeting on November 17, 2022. At this meeting, MoDOT staff agreed that the primary goal had been accomplished with this analysis and determined not to move forward with an EB-based before-afterstudy.

Conclusion

Holding left-turn signal phasing constant, installing FYA operation for permissive left-turns appears to reduce LTOD crashes. At sites where the left-turn phasing is protected-permissive in the before and after periods, an 18 percent reduction in O LTOD crashes and a 14 percent reduction in KABC LTOD crashes could be expected (based on the CMFs in Table 7 and Table 13). This trend is present across urban and rural locations, approaches where the left-turning vehicle must cross 1 or 2 opposing lanes, and through a range of speed limits. The magnitude of the effect varies across situations, especially when sample sizes are small, but the overall trend is generally consistent.

Further, this analysis estimates that the lifecycle benefits of installing FYA on an intersection approach are expected to be approximately 5 to 44 times greater than the installation cost, assuming that some form of permissive left-turn phasing (i.e., protected-permissive, or permissive) is already present and that a protected phase (i.e., protected only or protectedpermissive) is not removed.

The safety benefit of FYA phasing is not significant enough to overcome the negative effect of converting an approach from protected-only left-turn phasing to protected-permissive or permissive phasing operation.

Based on these results, the FYA could be expected to have a safety benefit for LTOD crashes at locations where it is being used to replace circular green permissive left-turn indications (e.g., a five-section doghouse style signal for protected-permissive phasing, a standard three-section signal for permissive left-turns). Replacing a protected left-turn signal phase with a permissive left-turn signal phase, even a protected-permissive phasing operation, would be expected to result in increased LTOD crashes, even if a FYA is installed as part of the phasing conversion.

These results are based on a simple before-after analysis. Further analyses considering traffic volumes at the approach level and other trends could provide a more accurate estimate of FYA safety performance. However, the results from this analysis are generally consistent with what has been observed in previous studies of FYA safety performance in other states.

References

Hauer, E. Observational Before-After Studies in Road Safety. Estimating the Effect of Highway and Traffic Engineering Measures on Road Safety. 1997.

Lawrence, M., A. Hachey, G. Bahar, and F. Gross. "Highway Safety Benefit-Cost Analysis Guide." Federal Highway Administration. FHWA-SA-18-001. February 2018.

Noyce, D., C. Bergh, and J. Chapman, Evaluation of the Flashing Yellow Arrow Permissive-Only Left-Turn Indication Field Implementation, NCHRP Web-Only Document 123, Washington D.C.: 2008.

Schattler, K. L., E. Anderson, and T. Hanson. "Safety Evaluation of Flashing Yellow Arrows for Protected/Permissive Left-Turn Control." Illinois Department of Transportation. FHWA-ICT-16010. March 2016.

Shea, M., and J. Medina. "Approach-Level Safety Comparison of Permissive-Protected and Protected Left Turn Phasing to Flashing Yellow Arrows." Presented at the 97th Annual Meeting of the Transportation Research Board, Paper No. 18-06742, Washington, D.C. January 2018.

Simpson, C. L., and S.A. Troy. "Safety Effectiveness of Flashing Yellow Arrow: Evaluation of 222 Signalized Intersections in North Carolina." Presented at the 94th Annual Meeting of the Transportation Research Board, Paper No. 15-1593, Washington, D.C. January 2015.

Srinivasan, R., et al., "NCHRP Report 705: Evaluation of Safety Strategies at Signalized Intersections." Washington, D.C., Transportation Research Board, National Research Council. 2011.

Srinivasan, R., B. Lan, D. Carter, S. Smith, and K. Signor. "Safety Evaluation of Flashing Yellow Arrow at Signalized Intersections." Federal Highway Administration. FHWA-HRT-19-036. August 2020.

USDOT, FHWA Policy Memorandums, MUTCD, Interim Approvalfor Optional Use of Flashing Yellow Arrow for Permissive Left Turns (IA-10), Washington, D.C.: March 20, 2006.

USDOT, Manual on Uniform Traffic Control Devices, (Washington, DC: Federal Highway Administration, 2009).

USDOT, Benefit-Cost Analysis Guidancefor Discretionary Grant Programs, (Washington, DC: 2022).

Van Houten, R., J. LaPlante, and T. Gustafson, "Evaluating Pedestrian Safety Improvements." Michigan DOT Final Report No. RC-1585. December 2012.

Appendix A - FYA Locations and Installation Dates

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
6855	NW	BUCHANAN	MO 6 E	CSTVILLAGE DR S	39.77699	-94.79996	10/26/2015	10/26/2015	10/26/2015	10/26/2015
5104	NW	BUCHANAN	MO 6 E	CST WOODBINE RDS	39.77699	-94.79670	10/27/2015	10/27/2015	10/27/2015	10/27/2015
7765	NW	BUCHANAN	MO 6 E	RP IS29S TO MO6 S	39.77696	-94.79433		11/10/2015		
6856	NW	BUCHANAN	MO 6 E	RP MO6 TO IS29N N	39.77702	-94.79301	11/10/2015			
4995	NW	BUCHANAN	LP 29 S	CST BLACKWELL RD E	39.81394	-94.81519			6/6/2019	6/6/2019
7377	NW	BUCHANAN	LP 29 S	CST NORTHRIDGE DRE	39.81101	-94.81521				5/1/2019
4998	NW	BUCHANAN	US 169 S	CST NORTH VILLAGE DR E	39.81202	-94.80661	11/16/2016	11/16/2016	11/16/2016	11/16/2016
5030	NW	BUCHANAN	US 169 S	CST GENE FIELD RDE	39.79209	-94.81052	7/1/2016	7/1/2016		
4999	NW	BUCHANAN	US 169 S	CSTFARAONSTE	39.76965	-94.80352	11/15/2016	11/15/2016	11/15/2016	11/15/2016
7375	NW	BUCHANAN	US 169 S	RTYYE	39.75525	-94.80367	9/12/2016	9/12/2016	9/12/2016	9/12/2016
7735	NW	BUCHANAN	US 169 S	RP US36W TO US169N	39.74729	-94.80217			9/26/2018	
7376	NW	BUCHANAN	US 169 S	RP US169 TO US36E E	39.74653	-94.80206				9/27/2018
3681	NW	DEKALB	US 69 S	LP 35 S	39.75516	-94.23430			7/16/2019	
11105	NW	DEKALB	US 69 S	LP 35 N	39.75357	-94.23432				7/16/2019
3682	NW	DEKALB	US 69 S	OR 36 E	39.75288	-94.23427			7/16/2019	7/16/2019
2387	NW	DEKALB	US 69 S	BU 36 E	39.74849	-94.23510	8/14/2019	8/14/2019	8/14/2019	8/14/2019

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
5002	NW	HARRISON	US 136E	CST 38TH STS	40.26520	-94.01588	5/11/2018	5/11/2018		
6895	NW	HARRISON	US 136 E	CST 39TH STS	40.26518	-94.01471	5/9/2018	5/9/2018		
5026	NW	HARRISON	US 69 S	US 136 E	40.26528	-94.02686		5/24/2018	5/24/2018	5/24/2018
16366	NW	LIVINGSTON	US 65 S	.241 mile(s) before CST HARVESTDRE	39.82664	-93.54761			4/26/2018	
14906	NW	CAPEGIRARDEAU	MO 190E	CRD HORNET RDS	39.81912	-93.55714	8/20/2013	8/20/2013	8/20/2013	8/20/2013

Northeast District

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
14465	NE	LINCOLN	MO47S	CST ELLIS AVES	38.98261	-90.99027	12/28/2011	12/28/2011	12/28/2011	12/28/2011
10955	NE	LINCOLN	MO47 S	RTJ S	38.97706	-91.00249	9/14/2012	9/14/2012	9/14/2012	9/14/2012
13445	NE	LINCOLN	RT U E	RP RTU TO US61SS	38.90854	-90.92483		9/19/2018		
13446	NE	LINCOLN	RT U E	RP US61NTO RTU E	38.90856	-90.92227	9/19/2018			
4924	NE	MACON	US 63 S	CST MAFFRY AVES	39.74598	-92.46603			6/30/2019	6/30/2019
4923	NE	MACON	US 63 S	CSTELMSTE	39.74480	-92.46511			8/4/2020	7/20/2019
1730	NE	MARION	US 61 S	CSTSTARDUST DRE	39.72198	-91.39196	7/29/2013	7/29/2013	7/29/2013	7/29/2013
946	NE	MARION	US 61 S	CSTPLEASANT STE	39.71300	-91.39162	9/25/2012		9/25/2012	9/25/2012
945	NE	MARION	US 61 S	RT MME	39.70577	-91.38906	8/27/2013	8/27/2013	8/27/2013	8/27/2013
1826	NE	RANDOLPH	US 24 E	RP US24 TO US63SS	39.44381	-92.42565		12/22/2020		
1827	NE	RANDOLPH	US 24 E	RP US24 TO US63N N	39.44489	-92.42251	12/15/2020	12/15/2020		
1828	NE	RANDOLPH	US 24E	OR 63 S	39.44536	-92.42109	12/15/2020	12/15/2020		
12265	NE	WARREN	MO47S	CST WARRIOR AVE E	38.79594	-91.14863	12/1/2018	12/1/2018		

Kansas City District

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE		$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
14896	KC	CASS	MO 7 S	CST COUNTRY CLUB DRE	38.79112	-94.26196			9/12/2013	9/12/2013
6875	KC	CASS	MO 7 S	CSTELMSTE	38.65692	-94.32880	1/1/2010	1/1/2010		
15126	KC	CASS	MO 7 S	CRD 275TH STE	38.61736	-94.34935			6/12/2013	
4255	KC	CASS	MO 58E	CSTSCOTTAVES	38.81472	-94.53478	9/25/2019	9/25/2019		9/25/2019
4254	KC	CASS	MO58E	CSTSCOTTAVES	38.81498	-94.53399			9/26/2019	
1606	KC	CASS	MO 58E	RT Y S	38.81424	-94.52574	9/28/2009	9/28/2009	9/28/2009	9/28/2009
4257	KC	CASS	MO 58E	CSTTOWNE CENTER DR S	38.81381	-94.51714	9/28/2009	9/28/2009		
4259	KC	CASS	MO 58E	CST NORTH AVEE	38.81357	-94.51222	9/28/2009	9/28/2009		
216	KC	CASS	MO 58E	CST POWELL PKWYS	38.81341	-94.50724	9/28/2009	9/28/2009		
217	KC	CASS	MO 58E	CRD PECULIAR DRS	38.81336	-94.50597		9/30/2009		
218	KC	CASS	MO 58E	RP IS49S TO MO58S	38.81337	-94.50501		9/30/2009		
219	KC	CASS	MO 58E	RP MO58 TO IS49NN	38.81330	-94.50287	9/30/2009			
221	KC	CASS	MO 58E	OR 49 S	38.81322	-94.50178	9/30/2009	9/30/2009		
220	KC	CASS	MO 58E	CSTBEL-RAYBLVD N	38.81298	-94.49746	9/29/2009	9/29/2009		
215	KC	CASS	MO 58E	CSTCLINT DR E	38.81283	-94.49398	9/29/2009	9/29/2009		
2100	KC	CASS	RT CS	RT J S	38.72334	-94.45413	5/24/2011			
2103	KC	CASS	RT CS	RT J S	38.72282	-94.45587		5/24/2011		

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	WESTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { NORTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	SOUTHBOUND INSTALLATION DATE
1605	KC	CASS	MO 291 S	.001 mile(s) after CST WALMART DRE	38.66518	-94.36696			5/4/2016	5/4/2016
1565	KC	CLAY	US 69 S	SP 10 E	39.36307	-94.23612			5/3/2017	5/3/2017
2031	KC	CLAY	US 69 S	CSTTRACYAVEE	39.35307	-94.24058			2/23/2021	2/23/2021
1163	KC	CLAY	US 69 S	CSTWORNALLRDE	39.34515	-94.24417			2/24/2021	2/24/2021
1564	KC	CLAY	US 69 S	CST CROWN HILL RD S	39.34078	-94.24912			5/2/2017	5/2/2017
1563	KC	CLAY	US 69 S	CSTMCCLEARYRD S	39.33324	-94.26382			3/9/2021	
16956	KC	CLAY	US 69 S	.099 mile(s) after CST GROVE ST S	39.20529	-94.48582				11/3/2014
1139	KC	CLAY	MO 10E	CST JESSE JAMES RDS	39.33798	-94.24916	1/1/2018	1/1/2018	1/1/2018	1/1/2018
1138	KC	CLAY	MO 10E	SP 10 E	39.33845	-94.24639	1/1/2018	1/1/2018		
6316	KC	CLAY	MO 1 S	CST NE 80TH STE	39.23854	-94.53960			5/26/2017	5/26/2017
223	KC	CLAY	MO 1 S	CST 73RD TER E	39.22640	-94.54749			5/26/2017	5/26/2017
232	KC	CLAY	MO 1S	CST 72ND STE	39.22416	-94.54840				5/26/2017
234	KC	CLAY	MO 1S	CST 64TH ST E	39.20977	-94.54845			5/26/2017	5/26/2017
230	KC	CLAY	MO 1S	CSTNE 53RD STE	39.19015	-94.54873			8/4/2014	8/4/2014
1603	KC	CLAY	MO 1S	CSTCLAYEDWARDS DRE	39.14763	-94.55597				1/1/2015
331	KC	CLAY	MO 269 S	RP MO210W TO MO269 W	39.15143	-94.53656			7/11/2017	
335	KC	CLAY	MO 269 S	RP MO269 TO MO210E E	39.14990	-94.53585				7/11/2017

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	WESTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { NORTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	SOUTHBOUND INSTALLATION DATE
15035	KC	CLAY	MO 92E	CST N COUNTRY AVES	39.36785	-94.37642	9/30/2013	9/30/2013	9/30/2019	9/30/2019
2029	KC	CLAY	MO92E	CSTPLATTE CLAY WAYS	39.36792	-94.36729	11/4/2013	11/4/2013		
1575	KC	CLAY	MO 92E	MO 33 S	39.36789	-94.36221	11/4/2013	11/4/2013	11/4/2013	11/4/2013
16817	KC	CLAY	US 169 S	CST HOSPITAL DRE	39.37817	-94.58312	12/24/2019		12/24/2019	12/24/2019
4287	KC	CLAY	MO 33 S	CST 19TH STE	39.35327	-94.36077		11/16/2020		
16226	KC	CLAY	MO 291 S	CST NE 104THSTE	39.27904	-94.46617		8/14/2017	8/14/2017	8/14/2017
6073	KC	CLAY	MO 291 S	CST NE 96TH STE	39.26763	-94.45195	11/15/2013	11/15/2013	11/15/2013	11/15/2013
256	KC	CLAY	MO 291 S	CST GLENN HENDREN DR E	39.26202	-94.44666				1/1/2014
15076	KC	CLAY	MO 291 S	CSTCOLLEGESTE	39.24781	-94.44615	5/1/2017	5/1/2017		
1583	KC	JACKSON	US 40E	CSTSTADIUM DRE	39.06253	-94.47824		9/21/2020		
824	KC	JACKSON	US 40 E	. 001 mile(s) before PVT BLUE RIDGE MALL E	39.04596	-94.44039		9/9/2020		
14925	KC	JACKSON	US 40 E	. 1 mile(s) before CST LARSON AVES	39.04476	-94.43682	10/11/2013	10/11/2013	10/11/2013	10/11/2013
842	KC	JACKSON	US 40E	CST WASHINGTON STS	39.03579	-94.41989		9/9/2020		
16	KC	JACKSON	US 40 E	CST HOCKER RDS	39.03545	-94.41096		9/22/2020		
846	KC	JACKSON	US 40 E	CST CLIFF AVE S	39.03360	-94.36474		7/1/2017		
4322	KC	JACKSON	US 40 E	CSTVALLEY VIEW PKWYE	39.03203	-94.35844			9/23/2020	9/23/2020
7858	KC	JACKSON	US 40 E	CST LITTLE BLUE PKWY S	39.02983	-94.35355				8/31/2018

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|c\|} \hline \text { NORTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	SOUTHBOUND INSTALLATION DATE
856	KC	JACKSON	US 40 E	RT AA E	39.00993	-94.26695	9/9/2020	9/9/2020		
110	KC	JACKSON	US 40 E	CSTADAMS DAIRY PKWY N	39.01314	-94.25360	9/17/2020	9/17/2020	9/17/2020	9/17/2020
15369	KC	JACKSON	US 40 E	RT AA E	39.01950	-94.19797			12/19/2013	12/19/2013
4473	KC	JACKSON	MO 7S	CRD TWYMAN RD S	39.13683	-94.29151			4/26/2016	
4464	KC	JACKSON	MO 7 S	RP MO7 TO US24E E	39.13551	-94.29077				4/26/2016
685	KC	JACKSON	MO 7 S	CST PINK HILL RD E	39.05280	-94.27079			4/4/2017	4/4/2017
695	KC	JACKSON	MO 7 S	CST ROANOKE DRE	39.04578	-94.27107			3/31/2017	3/31/2017
696	KC	JACKSON	MO 7S	CST DUNCAN RDE	39.03829	-94.27143			3/31/2017	3/31/2017
4803	KC	JACKSON	MO 7 S	CST CLUB DRE	39.03553	-94.27155			4/5/2017	4/5/2017
694	KC	JACKSON	MO 7 S	CSTSHAW PKWYE	39.03182	-94.27170			4/6/2017	4/6/2017
688	KC	JACKSON	MO 7 S	OR 70E	39.02776	-94.27184			4/7/2017	4/7/2017
687	KC	JACKSON	MO 7S	CST RD MIZE ROAD E	39.02374	-94.27203			4/10/2017	4/10/2017
692	KC	JACKSON	MO 7 S	CST VESPER ST E	39.02053	-94.27220			4/14/2017	4/14/2017
691	KC	JACKSON	MO 7S	CST MAINST E	39.01823	-94.27234			4/13/2017	
859	KC	JACKSON	MO 7 S	PVT CONSUMER LNE	39.00701	-94.27270			4/12/2017	4/12/2017
700	KC	JACKSON	MO 7 S	CST VICTOR DR E	39.00473	-94.27283	7/23/2020	7/23/2020	4/13/2017	4/13/2017
701	KC	JACKSON	MO 7S	CST CLARK RDE	39.00098	-94.27292	7/23/2020	7/23/2020	4/17/2017	4/17/2017
1695	KC	JACKSON	MO 7S	CSTMORELAND SCHOOLRDE	38.98749	-94.27351	7/22/2020	7/22/2020	4/17/2017	4/17/2017

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	WESTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { NORTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	SOUTHBOUND INSTALLATION DATE
1592	KC	JACKSON	MO7S	CSTSW LAKE VILLAGE DR E	38.98204	-94.27385			4/18/2017	4/18/2017
16121	KC	JACKSON	MO 7 S	.001 mile(s) before RP MO7TO US50W W	38.89398	-94.26465			11/23/2016	
16120	KC	JACKSON	MO 7 S	.006 mile(s) before RP US50E TO MO7 E	38.89258	-94.26466				11/23/2016
748	KC	JACKSON	US 24 E	CSTE WINNER RD E	39.10667	-94.48522		9/1/2020		
759	KC	JACKSON	US 24 E	CST NORTHERN BLVD S	39.10271	-94.45233	9/15/2020	9/15/2020	9/15/2020	9/15/2020
779	KC	JACKSON	US 24 E	CST LIBERTY ST S	39.10143	-94.41669	9/24/2020	9/24/2020		
775	KC	JACKSON	US 24E	CST NOLAND RD S	39.10125	-94.41279	9/16/2020	9/16/2020	9/16/2020	9/16/2020
778	KC	JACKSON	US 24E	CST DICKINSON RDS	39.10216	-94.40334		9/16/2020		
776	KC	JACKSON	US 24E	CST LEES SUMMIT RD S	39.10509	-94.39401	9/2/2020	9/2/2020		
777	KC	JACKSON	US 24 E	CSTINDEPENDENCEAVE E	39.10754	-94.39207	9/3/2020	9/3/2020		
782	KC	JACKSON	US 24 E	RP MO291N TO US24 N	39.11745	-94.38413	9/2/2020			
4316	KC	JACKSON	US 24 E	CST DOVER DRS	39.11847	-94.37872	9/8/2020	9/8/2020		
787	KC	JACKSON	US 24E	CSTJENNINGS RD S	39.11957	-94.37433	9/8/2020	9/8/2020		
786	KC	JACKSON	US 24 E	CSTSUSQUEHANNA RIDGE E	39.12130	-94.36875	9/8/2020	9/8/2020		
784	KC	JACKSON	US 24 E	CSTKENTUCKY RDE	39.12775	-94.35690	1/1/2018	1/1/2018	1/1/2018	1/1/2018
5716	KC	JACKSON	MO 150 E	CSTWHITEAVE S	38.85803	-94.52421			1/1/2018	1/1/2018
7480	KC	JACKSON	MO 150 E	CST HORRIDGE RD S	38.85419	-94.43570	7/5/2011	7/5/2011		

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|c\|} \hline \text { NORTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|l\|} \hline \text { SOUTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$
13927	KC	JACKSON	MO 150 E	CST SW PRYOR RD S	38.85369	-94.41721	9/15/2011	9/15/2011		
6113	KC	JACKSON	MO 150 E	CST SW REGATTA DRS	38.85319	-94.39512	7/5/2011	7/5/2011		
2653	KC	JACKSON	MO 150 E	CSTSW WINDEMERE DR S	38.85294	-94.38739	6/1/2012	6/1/2012		
4324	KC	JACKSON	MO 150 E	CST SW CHEDDINGTON DR S	38.85282	-94.38369	6/1/2012	6/1/2012		
4585	KC	JACKSON	MO 150 E	OR 291 S	38.85263	-94.37939	3/1/2014	3/1/2014	3/1/2014	
6965	KC	JACKSON	RT RA S	CSTSE TODD GEORGE PKWYS	38.90317	-94.33979			10/22/2018	
4336	KC	JACKSON	RT RA S	RP RTRA TO US50E E	38.90126	-94.33986				10/22/2018
16965	KC	JACKSON	RT RA S	OR 50 E	38.90042	-94.33991	12/14/2020		12/14/2020	12/14/2020
1209	KC	JACKSON	MO 12 E	CSTE WINNER RD E	39.09561	-94.46442	3/2/2021	3/2/2021		
1591	KC	JACKSON	MO 12E	CSTASH AVES	39.09529	-94.45627	3/3/2021	3/3/2021		
1210	KC	JACKSON	MO 12 E	CST FORESTAVES	39.09452	-94.43632	3/4/2021	3/4/2021		
1020	KC	JACKSON	MO 78E	CST TELEVISION PLE	39.08121	-94.48710	9/1/2020	9/1/2020		
1025	KC	JACKSON	MO 78E	CST CRYSLER AVES	39.07980	-94.43228			9/14/2020	9/14/2020
8535	KC	JACKSON	MO 78E	PVT HYVEE S	39.07846	-94.39440		9/1/2020		
2008	KC	JACKSON	MO 78E	CST HUB DR S	39.07785	-94.38123	9/14/2020	9/14/2020		
1029	KC	JACKSON	MO 78E	CST R D MIZE RD S	39.07770	-94.37660		9/21/2020		
4367	KC	JACKSON	MO 78E	CSTSWOPE DR S	39.07826	-94.36935	8/16/2010	8/16/2010		
4393	KC	JACKSON	MO 78E	CST SPECK RD S	39.07958	-94.36241	7/27/2010	7/27/2010		

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND installation DATE
4805	KC	JACKSON	MO78E	CSTHOLKE RDE	39.08319	-94.34328	8/24/2010	8/24/2010	8/24/2010	8/24/2010
1043	KC	JACKSON	MO 291S	CSTNE MULBERRYSTE	38.93935	-94.35978	6/23/2017	6/23/2017		
16228	KC	JACKSON	MO 291S	CST NE DEERBROOK STE	38.93545	-94.35996	8/15/2017	8/15/2017		
1054	KC	JACKSON	MO 291S	CSTNE TUDOR RDE	38.93158	-94.36012	8/15/2017	8/15/2017		
1050	KC	JACKSON	MO 291S	CST NE CHIPMAN RD E	38.92439	-94.36043	9/30/2018	9/30/2018		
1052	KC	JACKSON	MO 291S	CSTSE 3RD STE	38.91487	-94.36222	9/29/2018	9/29/2018	9/29/2018	9/29/2018
1045	KC	JACKSON	MO 291S	CSTSE 5THSTE	38.91023	-94.36256			8/11/2018	8/11/2018
1044	KC	JACKSON	MO 291S	CSTSE BAYBERRY LNE	38.90705	-94.36278			9/27/2018	9/27/2018
5780	KC	JACKSON	MO 291S	OR 50 E	38.90381	-94.36303	9/13/2017	9/13/2017	9/13/2017	9/13/2017
1047	KC	JACKSON	MO 291S	CSTSE HAMBLEN RDS	38.90325	-94.36304			9/29/2018	
807	KC	JACKSON	$\begin{array}{c\|} \hline N \\ \text { BROADWA } \\ \text { YBLVDS } \end{array}$	CSTTRUMAN RDE	39.09569	-94.58863				9/8/2011
1114	KC	JACKSON	$\begin{array}{\|c\|} \hline \mathrm{NE} \\ \mathrm{COLBERN} \\ \mathrm{RDE} \end{array}$	OR 470 E	38.94625	-94.36332	8/8/2018	8/8/2018		
5743	KC	JACKSON	MAINSTE	OR 49 S	38.88891	-94.52569		1/1/2018		
745	KC	JACKSON	E WINNER RDE	CSTMANCHESTER AVES	39.10562	-94.49126	6/1/2014	6/1/2014		
747	KC	JACKSON	CE WINNER RDE	US 24 W	39.10650	-94.48779		9/2/2020		

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
7015	KC	JACKSON	WOODS CHAPEL RD S	OR 70 E	39.03200	-94.30517		11/18/2016		
5749	KC	JACKSON	$\begin{gathered} \text { BLUE RIVER } \\ \text { RD N } \end{gathered}$	CST HICKMAN MILLS DR E	38.97051	-94.54649				9/22/2010
16435	KC	JACKSON	$\begin{array}{\|c\|} \hline \text { SW STONEY } \\ \text { CREEK DR } \\ \mathrm{N} \end{array}$	MO 150 E	38.85339	-94.40480	5/18/2018	5/18/2018	5/18/2018	5/18/2018
7795	KC	JACKSON	SE TODD GEORGE PKWYS	OR 50 E	38.90395	-94.33972	1/1/2018	1/1/2018	1/1/2018	1/1/2018
19	KC	JOHNSON	RT DDE	CST RIDGEVIEW DR S	38.74475	-93.71168	11/13/2018	11/13/2018	11/13/2018	11/13/2018
1106	KC	JOHNSON	BU 13 S	CST N MAGUIREST N	38.77591	-93.73636			11/13/2018	
1111	KC	JOHNSON	BU 13 S	RP BU13 TO US50E E	38.77476	-93.73602				11/13/2018
1745	KC	JOHNSON	BU 13 S	RT DDE	38.74557	-93.73495			11/11/2018	11/11/2018
2642	KC	PETTIS	US 50 E	CSTW MAINSTE	38.71448	-93.28176			6/5/2017	
634	KC	PETTIS	US 50 E	CSTS GRAND AVES	38.70452	-93.23650	3/14/2017	3/14/2017		
635	KC	PETTIS	US 50 E	CSTS KENTUCKY AVE S	38.70428	-93.23047	3/10/2017	3/10/2017		
637	KC	PETTIS	US 50 E	CST W BROADWAY BLVD E	38.70421	-93.22843	3/9/2017	3/9/2017		
1146	KC	PETTIS	US 50 E	CSTS LAMINE AVE S	38.70416	-93.22725	3/8/2017	3/8/2017		
4415	KC	PETTIS	US 50 E	CST ENGINEER AVE S	38.70363	-93.21353	3/1/2017	3/1/2017		
11088	KC	PLATTE	MO92E	SP 92 E	39.37585	-94.79322		7/7/2015		

| SIGNAL
 ID | DISTRICT |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |\quad COUNTY

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
1085	KC	JACKSON	BANNISTER RDE	CSTNW COLBERN RDE	38.94419	-94.40985		1/1/2017		
1084	KC	JACKSON	BANNISTER RDE	CSTNW COLBERN RDE	38.94426	-94.40800	1/1/2017			
1578	KC	JACKSON	US 40 W	CSTLITTLE BLUEPKWYS	39.03030	-94.35325			8/31/2018	

Central District

| SIGNAL
 ID | DISTRICT |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |\quad COUNTY

SIGNAL ID	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{gathered} \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{gathered}$	WESTBOUND INSTALLATION DATE	NORTHBOUN D INSTALLATION DATE	$\begin{array}{\|c\|} \text { SOUTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$
3974	CD	BOONE	RT ACE	RP US63S TO RTACS	38.91289	-92.29453		10/27/2010		
3973	CD	BOONE	RT ACE	CST GRINDSTONE PKWYE	38.91283	-92.29275	10/27/2010			
12457	CD	BOONE	MO 763 S	CSTRANGE LINE STS	39.00085	-92.32359			12/8/2010	12/8/2010
12465	CD	BOONE	MO 763 S	CSTSMILEY LN E	38.99309	-92.32384			12/9/2010	12/9/2010
12458	CD	BOONE	MO 763 S	CST RAIN FOREST PKWYE	38.98880	-92.32483	2/14/2011	2/14/2011	2/14/2011	2/14/2011
12459	CD	BOONE	MO 763 S	CST BLUE RIDGE RDE	38.98276	-92.32615			6/10/2009	6/10/2009
611	CD	BOONE	MO 763 S	CST BIG BEAR BLVDE	38.97706	-92.32642	1/5/2011	1/5/2011	1/5/2011	1/5/2011
609	CD	BOONE	MO 763 S	CSTVANDIVER DR E	38.97099	-92.32573	1/6/2011			
2864	CD	BOONE	MO 763 S	RT B S	38.95628	-92.32153			4/27/2010	4/27/2010
2842	CD	BOONE	MO 763 S	CST WALNUTSTE	38.95247	-92.32172	4/8/2010		4/8/2010	4/8/2010
572	CD	BOONE	MO 763 S	CST UNIVERSITY AVE E	38.94640	-92.32199	4/27/2010	4/27/2010	4/27/2010	4/27/2010
574	CD	BOONE	MO 763 S	CST ROLLINSSTE	38.94214	-92.32210	4/13/2010		4/13/2010	4/13/2010
16749	CD	BOONE	MO 763 S	PVT HOSPITAL DRE	38.93752	-92.32214			7/5/2012	7/5/2012
1911	CD	BOONE	RT WW E	CST BROADWAY E	38.94647	-92.29464		6/14/2018		
6427	CD	BOONE	RT WW E	CST BROADWAYE	38.94634	-92.29259	6/27/2018			
1912	CD	BOONE	RT WW E	CST KEENE ST S	38.94626	-92.29118	6/13/2018			
6956	CD	BOONE	RT WW E	CRD DANIEL BOONE BLVD S	38.93592	-92.26794	7/9/2019	7/9/2019	7/9/2019	7/9/2019

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	WESTBOUND INSTALLATION DATE	NORTHBOUN D INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
5455	CD	BOONE	RT TT E	CST PARK DE VILLE DR S	38.95503	-92.38471	10/20/2010	10/20/2010	10/20/2010	10/20/2010
1546	CD	BOONE	RT TT E	CST FAIRVIEW RD S	38.95469	-92.38071	10/7/2010	10/7/2010	10/7/2010	10/7/2010
16725	CD	BOONE	RT B S	.003 mile(s) after CST WACO RDE	39.01150	-92.27209	12/5/2017	12/5/2017	12/5/2017	12/5/2017
2634	CD	BOONE	RT B S	RP US63N TO RTB N	38.98920	-92.28518			4/5/2017	
2633	CD	BOONE	RT B S	RP RTB TO US63S S	38.98740	-92.28625				4/5/2017
1623	CD	BOONE	RT B S	CSTVANDIVER DR E	38.97316	-92.30248		4/5/2017	4/5/2017	4/5/2017
1548	CD	BOONE	RT B S	CST HERIFORD RD E	38.96809	-92.30733		4/5/2017	4/5/2017	4/5/2017
3218	CD	CALLAWAY	BU 54 E	RT Z E	38.86131	-91.94395	4/19/2011	4/19/2011	4/19/2011	4/19/2011
2699	CD	CALLAWAY	BU 54 E	CST DOUGLAS BLVDE	38.86423	-91.94392	4/20/2011	4/20/2011	4/20/2011	4/20/2011
2645	CD	CALLAWAY	BU 54 E	CST INDUSTRIAL DR E	38.87103	-91.94380	4/26/2011	4/26/2011	4/26/2011	4/26/2011
1541	CD	CALLAWAY	RT FE	CST WESTMINSTER AVE S	38.84681	-91.95418	4/19/2011	4/19/2011	4/19/2011	4/19/2011
7625	CD	CAMDEN	MO 5 S	RT F S	38.14841	-92.77450	8/3/2016	8/3/2016	8/3/2016	8/3/2016
12935	CD	CAMDEN	US 54 E	RP MO5NTO US54E	38.01522	-92.73478	5/22/2013			
6955	CD	CAMDEN	US 54E	CSTJACK CROWELLRDS	38.01626	-92.73239	10/24/2012	10/25/2012		
14305	CD	CAMDEN	$\begin{aligned} & \text { NICHOLS } \\ & \text { RD N } \end{aligned}$	RP US54E TO NICHOLS RD E	38.12371	-92.68305				8/6/2012
14306	CD	CAMDEN	$\begin{gathered} \hline \text { NICHOLS } \\ \text { RD N } \end{gathered}$	RP US54W TO NICHOLS RD W	38.12437	-92.68425			3/5/2013	

SIGNAL ID	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|c} \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|c\|} \hline \text { NORTHBOUN } \\ \text { D } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	SOUTHBOUND INSTALLATION DATE
12555	CD	CAMDEN	E OSAGE BEACH PKWYN	CST PASSOVER RDS	38.14024	-92.63439			5/18/2007	5/19/2007
14309	CD	CAMDEN	$\begin{aligned} & \text { W OSAGE } \\ & \text { BEACH } \\ & \text { PKWYN } \end{aligned}$	CST JEFFRIES RD S	38.13149	-92.64971			2/18/2010	
16949	CD	CAMDEN	MO 242 E	RT MM E	38.19060	-92.64110		4/2/2012		
3969	CD	COLE	RT CE	RT CCS	38.54641	-92.22708	7/21/2016	7/21/2021		
6932	CD	COLE	RT CE	RP RTC TO MO179SS	38.54635	-92.22536		12/8/2014		
6931	CD	COLE	RT CE	RP MO179N TO RTCE	38.54680	-92.22302	12/8/2014			
1532	CD	COLE	RT CE	CSTIDLEWOOD RDS	38.55077	-92.21222				12/8/2014
3155	CD	COLE	RT CE	CSTSOUTHRIDGE DRE	38.55504	-92.19984	10/25/2018	10/25/2018	10/25/2018	10/25/2018
620	CD	COLE	RT CE	OR 54 E	38.55415	-92.19842	10/24/2018	10/24/2018	10/24/2018	10/24/2018
1237	CD	COLE	MO 179 S	CST INDUSTRIAL DR E	38.59493	-92.22580	10/7/2010	10/7/2010	10/7/2010	10/7/2010
2697	CD	COLE	MO 179 S	OR 50E	38.58337	-92.23154			8/18/2010	8/18/2010
2698	CD	COLE	MO 179 S	RP MO179 TO US50E E	38.58103	-92.23131				10/4/2010
657	CD	COLE	MO 179 S	BU 50E	38.58024	-92.23120			10/8/2010	
6995	CD	COLE	BU 50 E	.01 mile(s) before CST STONERIDGE PKWYS	38.58201	-92.22426		10/9/2007		
6996	CD	COLE	BU 50 E	PVTSEAYPLACEE	38.58216	-92.22096		2/15/2010		

SIGNAL ID	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|l} \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	NORTHBOUN D INSTALLATION DATE	$\begin{array}{\|c\|} \text { SOUTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$
6997	CD	COLE	BU 50 E	CSTST MARYS BLVDE	38.58194	-92.21572	4/18/2011			4/18/2011
3976	CD	COLE	BU 50 E	CST SOUTHWEST BLVDS	38.58085	-92.20045	12/22/2010			
1531	CD	COLE	BU 50 E	CST KANSASSTS	38.57800	-92.18995	5/18/2010	5/18/2010		
639	CD	COLE	BU 50 E	CST DELAWARESTS	38.57778	-92.18548	5/25/2010	5/25/2010	5/25/2010	5/25/2010
641	CD	COLE	BU 50 E	CSTW DUNKLINST E	38.57777	-92.18363				5/19/2010
11086	CD	COLE	BU 50 E	RP BU50 TO US54E E	38.57856	-92.18239	5/18/2010	5/18/2010	5/18/2010	
621	CD	COLE	$\begin{array}{\|c\|} \hline \text { ELLIS BLVD } \\ \mathrm{E} \end{array}$	OR 54 E	38.55322	-92.19626	10/25/2018	10/25/2018	10/25/2018	10/25/2018
2298	CD	COLE	$\begin{gathered} \text { W } \\ \text { MCCARTY } \\ \text { STE } \end{gathered}$	CST INDUSTRIAL DR E	38.58340	-92.18390		4/21/2014		
6945	CD	COLE	W TRUMAN BLVD E	RP US50W TO TRUMAN BLVD ${ }^{\text {E }}$	38.58410	-92.25695	6/18/2013			
5084	CD	COLE	W TRUMAN BLVDE	OR 50 E	38.58471	-92.25665	6/18/2013	6/18/2013		
5080	CD	COLE	$\begin{array}{\|c\|} \hline \text { S COUNTRY } \\ \text { CLUB DR S } \end{array}$	OR 50 E	38.58146	-92.25791			6/18/2013	6/18/2013
1717	CD	COLE	$\begin{array}{\|c\|} \hline \text { S COUNTRY } \\ \text { CLUB DR S } \end{array}$	OR 50 E	38.58095	-92.25815				6/18/2013
1793	CD	COLE	$\begin{gathered} \text { EASTLAND } \\ \text { DRS } \end{gathered}$	RP US50W TO EASTLAND DR N	38.55133	-92.14769			4/23/2014	

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUN D INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
1795	CD	COLE	EASTLAND DRS	RP EASTLAND DR TO US50E E	38.55054	-92.14912				4/23/2014
16948	CD	COLE	LAFAYETTE ST S	RP US50W TO LAFAYETTE ST N	38.56912	-92.16740			10/18/2017	
16947	CD	COLE	LAFAYETTE ST S	RP LAFAYETTE STTO US50E E	38.56860	-92.16799				10/18/2017
2445	CD	CRAWFORD	MO 19 S	RT DDS	38.07426	-91.40724		10/31/2012	10/31/2012	10/31/2012
1298	CD	DENT	MO 19 S	MO 32 E	37.63584	-91.53561	8/12/2014	8/12/2014	8/12/2014	8/12/2014
2438	CD	DENT	MO 32 E	CSTS ASKINS STS	37.63609	-91.54603	8/28/2013	8/28/2013		
2440	CD	DENT	MO 32 E	RT J E	37.63594	-91.54028	9/18/2013	9/18/2013		9/18/2013
7535	CD	GASCONADE	MO 19 N	MO 28E	38.34508	-91.49465		11/1/2017		
7566	CD	GASCONADE	MO 19 N	MO 28E	38.35542	-91.48170	7/15/2010	7/15/2010	7/15/2010	7/15/2010
1529	CD	GASCONADE	MO 28E	CST FIRST STS	38.34501	-91.50053	11/7/2017	11/7/2017	11/7/2017	11/7/2017
11315	CD	LACLEDE	MO 5 S	RT YY S	37.69870	-92.66789	4/22/2013	4/22/2013	4/22/2013	4/22/2013
6827	CD	LACLEDE	MO 5 S	CST BRICE STE	37.69170	-92.66775	9/10/2013	9/11/2013	9/12/2013	9/13/2013
6831	CD	LACLEDE	MO 5 S	CSTCOMMERCIALSTE	37.68052	-92.66382			2/1/2014	2/2/2014
6834	CD	LACLEDE	MO 5 S	CSTVANCE RD E	37.67328	-92.65435	9/10/2013	9/11/2013	9/12/2013	9/13/2013
6835	CD	LACLEDE	MO 5 S	RP IS44W TO MO5 W	37.67021	-92.65044			7/31/2013	
6836	CD	LACLEDE	MO 5 S	RP MO5 TO IS44EE	37.66886	-92.64964				4/28/2014

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUN D INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
6837	CD	LACLEDE	MO 5 S	MO 32 E	37.66655	-92.64948			1/1/2014	1/1/2014
6838	CD	LACLEDE	MO 5 S	CST EVERGREEN PARKWAYE	37.66360	-92.64945	1/13/2013	1/13/2013	1/13/2013	1/13/2013
6839	CD	LACLEDE	MO 5 S	CST BLAND RD E	37.66208	-92.64941	2/1/2014	2/1/2014	2/1/2014	2/1/2014
4407	CD	MILLER	MO 52 W	BU 54 E	38.34686	-92.58140	10/12/2011	10/12/2011		10/12/2011
5079	CD	MONITEAU	US 50 E	MO 5 S	38.65217	-92.78383	1/28/2010	1/28/2010	1/28/2010	
3983	CD	MONITEAU	BU 50 E	MO 87 S	38.62754	-92.56652	9/9/2014	9/9/2014	9/9/2014	9/9/2014
1867	CD	MORGAN	MO 5 S	RT O E	38.19908	-92.83385	7/18/2017	7/18/2017	7/18/2017	7/18/2017
6485	CD	PHELPS	US 63 S	. 003 mile(s) before CST BISHOP AVES	37.96072	-91.76607				8/18/2020
4027	CD	PHELPS	US 63 S	CSTPINE ST S	37.95939	-91.77071	3/16/2018	3/16/2018	3/16/2018	3/16/2018
927	CD	PHELPS	US 63 S	CSTVICHY RDS	37.95806	-91.77348			3/16/2018	
919	CD	PHELPS	US 63 S	RT E S	37.95516	-91.77707			4/19/2010	
923	CD	PHELPS	US 63 S	RT BBE	37.95152	-91.77713	5/14/2015	5/14/2015	5/14/2015	5/14/2015
925	CD	PHELPS	US 63 S	CST FORT WYMAN DR E	37.93855	-91.77733			5/18/2015	5/18/2015
2053	CD	PHELPS	US 63 S	CST LANNING LNE	37.93137	-91.77855		5/18/2015	5/18/2015	5/18/2015
2441	CD	PHELPS	MO 72E	CST ROLLA STS	37.94243	-91.77226	7/29/2014	7/29/2014	7/29/2014	7/29/2014
2442	CD	PHELPS	MO 72 E	CSTSALEM AVE E	37.93811	-91.75345	7/31/2014	7/31/2014	7/31/2014	7/31/2014
54	CD	PHELPS	MO 72 E	RT O S	37.93533	-91.74797	7/30/2014	7/30/2014	7/30/2014	7/30/2014

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	WESTBOUND INSTALLATION DATE	NORTHBOUN D INSTALLATION DATE	$\begin{array}{\|c\|} \text { SOUTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$
7385	CD	PHELPS	RT V E	RP RTV TO IS44E E	37.97869	-91.71899	11/19/2013			
5117	CD	PULASKI	SP 44E	CST BOSA DRE	37.80822	-92.14356			4/12/2017	4/12/2017
5118	CD	PULASKI	SP 44E	CST GATEWAY CIR S	37.79865	-92.13913	2/1/2017		2/1/2017	2/1/2017
14005	CD	PULASKI	RT HS	OR 44E	37.80789	-92.22349			3/14/2012	3/14/2012
5945	CD	PULASKI	RT HS	LP 44 E	37.80376	-92.22128				9/30/2013

St. Louis District

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	$\begin{aligned} & \text { NORTHBOUND } \\ & \text { INSTALLATION } \\ & \text { DATE } \end{aligned}$	\qquad
16780	SL	FRANKLIN	MO 185 S	CST W SPRINGFIELD RD E	38.20822	-91.17217	12/4/2017	12/4/2017	12/4/2017	12/4/2017
17016	SL	FRANKLIN	MO 185 S	RTAFS	38.22356	-91.15392			8/13/2012	8/13/2012
3204	SL	FRANKLIN	MO 185 S	CST E SPRINGFIELD RD S	38.22285	-91.15228	12/4/2017	12/4/2017	12/4/2017	12/4/2017
2478	SL	FRANKLIN	MO 47 S	CSTTHIRD STE	38.55309	-91.00139	2/5/2013	2/5/2013	2/5/2013	2/5/2013
2479	SL	FRANKLIN	MO 47 S	CST FIFTH STE	38.55219	-91.00203			2/5/2013	2/5/2013
2480	SL	FRANKLIN	MO47S	CSTEIGHTH ST E	38.55037	-91.00340	2/5/2013	2/5/2013	2/5/2013	2/5/2013
13645	SL	FRANKLIN	MO47S	CST BLUE JAY DR E	38.54836	-91.00598			2/5/2013	
2481	SL	FRANKLIN	MO47S	CST FOURTEENTHST E	38.54531	-91.00631	2/5/2013	2/5/2013	2/5/2013	2/5/2013
2482	SL	FRANKLIN	MO47S	CST HERITAGE HILL DR S	38.54368	-91.00610			2/5/2013	
2724	SL	FRANKLIN	MO 47 S	CST STEUTERMANN RDE	38.53403	-91.00590	2/5/2013	2/5/2013	2/5/2013	2/5/2013
7245	SL	FRANKLIN	MO47S	CRD CLEARVIEW RD E	38.48219	-91.00510			10/26/2015	10/26/2015
1198	SL	FRANKLIN	MO 47 S	RT A S	38.46021	-91.00465	10/26/2015	10/26/2015	10/26/2015	10/26/2015
1515	SL	FRANKLIN	MO 47 S	RT V E	38.45475	-91.00224	10/26/2015		10/26/2015	10/26/2015
7256	SL	FRANKLIN	MO 47 S	CST MAINST E	38.44581	-90.99825	10/26/2015	10/26/2015	10/26/2015	10/26/2015
15370	SL	FRANKLIN	MO47S	OR 44 E	38.36618	-90.98146	3/18/2014	3/18/2014	3/18/2014	3/18/2014
15371	SL	FRANKLIN	MO47S	RP IS44W TO MO47W	38.36215	-90.97956			3/18/2014	
15372	SL	FRANKLIN	MO 47S	RP IS44E TO MO47 E	38.36133	-90.97841				3/18/2014

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|c} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	NORTHBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { SOUTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$
14075	SL	FRANKLIN	RT AFS	MO 185 S	38.22356	-91.15392			8/13/2012	8/13/2012
394	SL	FRANKLIN	US 50 E	CST FRANK STS	38.43965	-91.01223	10/26/2015	10/26/2015	10/26/2015	10/26/2015
395	SL	FRANKLIN	US 50 E	CSTOAK STS	38.44235	-91.00652	10/26/2015	10/26/2015	10/26/2015	10/26/2015
396	SL	FRANKLIN	US 50 E	MO 47 S	38.44215	-90.99030		10/26/2015		
1199	SL	FRANKLIN	US 50 E	CST PRAIRIE DELL STS	38.43213	-90.97283	10/26/2015	10/26/2015		
16762	SL	FRANKLIN	US 50 E	CST DENMARK STS	38.43297	-90.96554	5/30/2019	5/30/2019	5/30/2019	5/30/2019
5523	SL	FRANKLIN	MO 100 E	CST HIGH STS	38.54425	-91.02532	5/4/2015	5/4/2015	5/4/2015	5/4/2015
476	SL	FRANKLIN	MO 100 E	RT A S	38.54196	-91.01758	2/24/2015	2/24/2015		
2583	SL	FRANKLIN	MO 100 E	CST WASHINGTON CORNER S	38.53868	-91.00963	2/24/2015	2/24/2015	2/24/2015	2/24/2015
381	SL	FRANKLIN	MO 100 E	CST WASHINGTON HTS DR S	38.53892	-90.99869		7/28/2010		
383	SL	FRANKLIN	MO 100 E	CST INTERNATIONAL STS	38.53874	-90.98761	7/27/2010	7/27/2010	7/27/2010	7/27/2010
7265	SL	FRANKLIN	MO 100 E	CSTVERNACIDR S	38.53713	-90.98113	8/3/2010	8/3/2010		
382	SL	FRANKLIN	MO 100 E	CSTFIFTH STE	38.53582	-90.97753	8/5/2010	8/5/2010		8/5/2010
14675	SL	FRANKLIN	MO 30E	CST BARDOTSTS	38.33922	-90.98166	11/27/2012	11/27/2012	11/27/2012	11/27/2012
5448	SL	FRANKLIN	LP 44E	CST LAMAR PKWYS	38.48439	-90.76839	11/27/2017	11/27/2017		
417	SL	FRANKLIN	LP 44E	CST VIADUCTST S	38.48470	-90.75954	11/27/2017	11/27/2017	11/27/2017	11/27/2017
419	SL	FRANKLIN	LP 44E	CSTN PAYNE ST S	38.48440	-90.75563		11/27/2017		
1941	SL	FRANKLIN	LP 44E	RTOO S	38.48409	-90.74140	11/27/2017	11/27/2017		

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
1509	SL	JEFFERSON	RT Z E	CST MAINST E	38.28805	-90.39875	12/11/2019	12/11/2019	12/11/2019	
5254	SL	JEFFERSON	US 61 S	CSTSTARLING AIRPORT RDS	38.45307	-90.36195		10/26/2015	10/26/2015	10/26/2015
423	SL	JEFFERSON	US 61 S	CST TENBROOK RD S	38.44858	-90.36924	10/26/2015	10/26/2015	10/26/2015	10/26/2015
427	SL	JEFFERSON	US 61 S	CSTARNOLD TENBROOKRD S	38.43447	-90.37570			10/26/2015	10/26/2015
10677	SL	JEFFERSON	US 61 S	CSTE CHURCH RDE	38.43223	-90.37854			10/26/2015	10/26/2015
1484	SL	JEFFERSON	US 61 S	MO 231 S	38.40497	-90.37697				10/26/2015
3781	SL	JEFFERSON	US 61 S	CRD RIVER STE	38.36888	-90.37609	10/26/2015	10/26/2015	10/26/2015	10/26/2015
3017	SL	JEFFERSON	US 61 S	RT Z E	38.29117	-90.39608	10/26/2015	10/26/2015	10/26/2015	10/26/2015
1481	SL	JEFFERSON	US 61 S	CST RIVERVIEW PLAZA DRE	38.25485	-90.39318	2/5/2013	2/5/2013		2/5/2013
1480	SL	JEFFERSON	US 61 S	CSTEAST6THST E	38.22695	-90.38554	2/5/2013	2/5/2013	2/5/2013	
3711	SL	JEFFERSON	US 61 S	CST BAILEY RD E	38.21906	-90.38516		2/5/2013	2/5/2013	2/5/2013
403	SL	JEFFERSON	US 61 S	CST BEFFA STE	38.21555	-90.38713			2/5/2013	2/5/2013
5464	SL	JEFFERSON	RT A E	.002 mile(s) before RP MO21N TO RTA E	38.24975	-90.55863	6/27/2013			
5465	SL	JEFFERSON	RTAE	CST BUSINESS 21 S	38.24963	-90.55695	6/27/2013	6/27/2013	6/27/2013	6/27/2013
16746	SL	JEFFERSON	RT A E	CST POUNDS RDS	38.21383	-90.41883	4/23/2018	4/23/2018		
1510	SL	JEFFERSON	RT A E	CST COLLINS DRS	38.21347	-90.41218	2/5/2013	2/5/2013		
4133	SL	JEFFERSON	RT A E	CST BRADLEY STS	38.21309	-90.40882	2/5/2013	2/5/2013		

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|l\|} \hline \text { NORTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	SOUTHBOUND INSTALLATION DATE
399	SL	JEFFERSON	RT A E	CSTGANNON DRE	38.21358	-90.40330	2/5/2013	2/5/2013		2/5/2013
1200	SL	JEFFERSON	RT A E	CST MILL STS	38.21204	-90.39631	2/5/2013	2/5/2013		
7869	SL	JEFFERSON	MO 141 S	.042 mile(s) after CST LONE STAR DR E	38.44421	-90.37528	4/9/2013			
3559	SL	JEFFERSON	IMPERIAL MAINST E	$\begin{aligned} & \text { RP IMPERIALMAINSTTO IS55S } \\ & \text { S } \end{aligned}$	38.36967	-90.38389		11/27/2017		
3560	SL	JEFFERSON	IMPERIAL MAINST E	RP IS55N TO IMPERIALMAINST E	38.36945	-90.38162	11/27/2017			
16747	SL	JEFFERSON	$\begin{gathered} \hline \text { OLD HWY } \\ 21 \mathrm{~S} \end{gathered}$	CRD LONEDELL RDE	38.45201	-90.44427			1/11/2018	1/11/2018
3561	SL	JEFFERSON	W OR 55 S	CRD IMPERIAL MAIN STE	38.36974	-90.38522	11/27/2017	11/27/2017		
4988	SL	ST. CHARLES	LP 70E	OR 70E	38.76696	-90.49555		7/10/2017		
16759	SL	ST. CHARLES	RT N E	CSTPERRY CATE BLVDS	38.76674	-90.84340	1/3/2019			
16783	SL	ST. CHARLES	RT N E	CST LAKE STLOUIS BLVD E	38.76145	-90.80071	3/1/2017	3/1/2017	3/1/2017	3/1/2017
15375	SL	ST. CHARLES	RT N E	CST BRYAN RD S	38.76933	-90.74073				7/27/2015
2723	SL	ST. CHARLES	MO 79 S	CSTT R HUGHES BLVD S	38.82514	-90.66388			6/28/2017	
1747	SL	ST. CHARLES	MO 79 S	OR 70E	38.79962	-90.65336			11/10/2020	
15565	SL	ST. CHARLES	RT ZS	CST INTERSTATE DRE	38.80171	-90.85513	2/26/2015	2/26/2015	2/26/2015	2/26/2015
30	SL	ST. CHARLES	RTMS	RT P E	38.82986	-90.69952	8/11/2013	8/11/2013	8/11/2013	8/11/2013
11575	SL	ST. CHARLES	RT K S	CSTMAINST S	38.80335	-90.70015	10/12/2009	10/12/2009	10/12/2009	10/12/2009

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { SOUTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$
5911	SL	ST. CHARLES	RT K S	OR 70 W	38.80298	-90.70016			10/12/2009	
435	SL	ST. CHARLES	RT K S	OR 70E	38.80199	-90.70021				10/13/2009
2503	SL	ST. CHARLES	RT K S	CST MEXICO LOOP RD E	38.78964	-90.69949	6/29/2010	6/29/2010	6/29/2010	6/29/2010
5354	SL	ST. CHARLES	RT K S	CRD CLEAR CREEK DR E	38.78727	-90.69981			6/30/2010	6/30/2010
3214	SL	ST. CHARLES	RT K S	CST WINDING WOODS DRE	38.78372	-90.69979			7/7/2010	7/7/2010
1471	SL	ST. CHARLES	RT K S	CST FEISE RDE	38.78023	-90.69986			7/8/2010	7/8/2010
2289	SL	ST. CHARLES	RT K S	PVTTARGETE	38.77741	-90.69992	7/13/2010	7/13/2010	7/13/2010	7/13/2010
5139	SL	ST. CHARLES	RT K S	.001 mile(s) after CST HUTCHINGS FARM DR E	38.77412	-90.70000	7/14/2010	7/14/2010	7/14/2010	7/14/2010
2291	SL	ST. CHARLES	RT K S	PVT DARDENNE ELEMENTARY SCHOOLE	38.77142	-90.70005	2/5/2013	2/5/2013		2/5/2013
3509	SL	ST. CHARLES	RT K S	CSTFALLONPKWYE	38.76264	-90.70016	2/5/2013	2/5/2013	2/5/2013	2/5/2013
2307	SL	ST. CHARLES	RT K S	CRD CHRISTINA MARIE DR E	38.75937	-90.70020			2/5/2013	2/5/2013
7875	SL	ST. CHARLES	RT K S	RT N E	38.75695	-90.70022	2/5/2013	2/5/2013		
2310	SL	ST. CHARLES	RT K S	CST WATERFORD CROSSING DRE	38.74568	-90.69853		2/5/2013	2/5/2013	2/5/2013
1959	SL	ST. CHARLES	RT K S	CRD O FALLONRD E	38.73425	-90.69127				2/5/2013
3203	SL	ST. CHARLES	RT K S	CST WATERBURY FALLSDRS	38.72457	-90.69784	2/5/2013	2/5/2013	2/5/2013	2/5/2013
3927	SL	ST. CHARLES	RT K S	CSTCRUSHER DR E	38.72166	-90.69997	2/5/2013	2/5/2013	2/5/2013	2/5/2013

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{aligned} & \text { EASTBOUND } \\ & \text { INSTALLATION } \\ & \text { DATE } \end{aligned}$	WESTBOUND installation DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
4228	SL	ST. CHARLES	RT K S	OR64E	38.71769	-90.70217			2/5/2013	2/5/2013
4235	SL	ST. CHARLES	RT KS	RP IS64W TO RTK N	38.71497	-90.70346			2/5/2013	
3840	SL	ST. CHARLES	MO94E	CSTTOMPKINS STS	38.78409	-90.50234	9/18/2014	9/18/2014	9/18/2014	9/18/2014
1627	SL	ST. CHARLES	MO 94E	RP MO370W TO M094 W	38.80514	-90.47509	2/6/2018			
1643	SL	ST. CHARLES	MO 94E	CSTLITTLEHILLS EXPWYE	38.80737	-90.47480	8/27/2019	8/27/2019	8/27/2019	8/27/2019
16165	SL	ST. CHARLES	FAIRGROU NDS RD S	OR70 W	38.77132	-90.50013			7/10/2017	
431	SL	ST. CHARLES	MID RIVERS MALL DRS	OR70E	38.80155	-90.62000			12/3/2017	12/3/2017
437	SL	ST. CHARLES	PITMAN AVE E	CSTLUETKENHAUS BLVDS	38.81210	-90.84255	3/9/2017			
11515	SL	ST. CHARLES	$\begin{array}{\|c\|} \hline \text { SONDEREN } \\ \text { ST S } \end{array}$	CSTSONDERENLPS	38.80424	-90.69525				10/15/2018
449	SL	ST. CHARLES	N OR 70E	CSTZUMBEHLRDS	38.78823	-90.53302			12/29/2016	12/29/2016
16778	SL	ST. CHARLES	NOR70 W	.271 mile(s) before CSTMAIN ST E	38.79975	-90.61585	12/5/2017			
7206	SL	ST. CHARLES	NOR94 W	CSTOLD MO 94E	38.75347	-90.55393			4/23/2015	
14627	SL	ST. CHARLES	NOR94 W	RTN E	38.73889	-90.63356			9/20/2011	
3610	SL	ST. CHARLES	NOR64E	.002 mile(s) after CST MASTERCARD BLVDE	38.74840	-90.75065			11/6/2013	11/6/2013
14629	SL	ST. CHARLES	SOR94E	CRD KISKER RDS	38.74007	-90.61784				5/13/2012

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE		WESTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { NORTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	\qquad
3232	SL	ST. CHARLES	S OR 70E	CSTWOODLAWNAVES	38.79840	-90.70517	5/1/2015	5/1/2015	5/1/2015	5/1/2015
143	SL	ST. LOUIS	US 61 S	CST LITZSINGER RD E	38.62566	-90.40592	9/22/2020	9/22/2020	9/22/2020	
4151	SL	ST. LOUIS	US 61 S	CST LINDBERGH BLVD E	38.56672	-90.40677	5/22/2012	5/22/2012	5/22/2012	
4148	SL	ST. LOUIS	US 61 S	CST KIRKWOOD COMMONS E	38.56361	-90.40685			5/13/2012	5/13/2012
4174	SL	ST. LOUIS	US 61 S	US 50 W	38.56008	-90.40703			5/14/2012	
2035	SL	ST. LOUIS	US 61 S	.002 mile(s) before PVT LAKEVIEW PLAZAS	38.50021	-90.33380	5/13/2012	5/13/2012		5/13/2012
526	SL	ST. LOUIS	US 61 S	CRD MEHL AVES	38.49945	-90.33499			5/13/2012	
5926	SL	ST. LOUIS	US 61 S	PVT KELLER PLAZA DRE	38.49854	-90.33850			5/13/2012	5/13/2012
4703	SL	ST. LOUIS	US 61 S	CRD MATTIS RD E	38.49433	-90.34476	5/13/2012		5/13/2012	5/13/2012
5928	SL	ST. LOUIS	US 61 S	CRD BUTLER HILL RD E	38.48543	-90.34878				5/13/2012
1246	SL	ST. LOUIS	US 61 S	CRD MERAMEC BOTTOM RD E	38.46479	-90.35712	5/13/2012	5/13/2012	5/13/2012	5/13/2012
1682	SL	ST. LOUIS	US 67 S	.024 mile(s) before CRD ROBBINS MILL RD E	38.82215	-90.24294	8/15/2013	8/15/2013	8/15/2013	8/15/2013
161	SL	ST. LOUIS	US 67 S	CRD OLD JAMESTOWNRD S	38.82306	-90.24973	7/29/2013	7/29/2013	7/29/2013	7/29/2013
16755	SL	ST. LOUIS	US 67 S	PVTSUNSWEPT PARK DR E	38.81259	-90.29242			12/2/2016	12/2/2016
1501	SL	ST. LOUIS	US 67 S	.003 mile(s) before PVT FLOWER VALLEYS	38.81070	-90.29617	5/13/2012	5/13/2012	5/13/2012	5/13/2012
2161	SL	ST. LOUIS	US 67 S	PVTCOUGAR DRS	38.80742	-90.30221			5/13/2012	

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
1680	SL	ST. LOUIS	US 67 S	CSTTROTTER WAYS	38.80615	-90.30458	5/13/2012	5/13/2012	5/13/2012	5/13/2012
1679	SL	ST. LOUIS	US 67 S	.002 mile(s) after PVT TARGET S	38.80361	-90.30943	5/13/2012	5/13/2012	5/13/2012	5/13/2012
163	SL	ST. LOUIS	US 67S	CST NORTH WATERFORD DRE	38.80154	-90.31323			5/13/2012	5/13/2012
164	SL	ST. LOUIS	US 67 S	CST NEW FLORISSANT RD NORTH S	38.80012	-90.31591			5/13/2012	5/13/2012
166	SL	ST. LOUIS	US 67 S	CSTST JEAN ST S	38.79873	-90.32562				5/13/2012
2036	SL	ST. LOUIS	US 67 S	CSTST FERDINAND STS	38.79923	-90.32823		5/13/2012	5/13/2012	5/13/2012
171	SL	ST. LOUIS	US 67 S	CSTCHARBONIER RDE	38.79680	-90.33888			5/26/2010	5/26/2010
168	SL	ST. LOUIS	US 67 S	CST MANRESA LNE	38.79040	-90.34590			5/25/2010	5/25/2010
170	SL	ST. LOUIS	US 67 S	CST CHEZ PAREE DRE	38.78778	-90.34928			5/24/2010	5/24/2010
169	SL	ST. LOUIS	US 67 S	CSTELMGROVE AVEE	38.78443	-90.35449	8/23/2010	8/23/2010		
146	SL	ST. LOUIS	US 67 S	CST LADUE RD E	38.65507	-90.40541	1/14/2019	1/14/2019	1/14/2019	1/14/2019
144	SL	ST. LOUIS	US 67 S	CSTCONWAYRDE	38.64316	-90.40555			9/27/2016	9/27/2016
1437	SL	ST. LOUIS	MO 21 S	PVT LUTHERAN HIGH SCHOOL E	38.54820	-90.33279			2/5/2013	
5909	SL	ST. LOUIS	MO21S	.007 mile(s) before CRD REAVIS RDE	38.54408	-90.33297				2/5/2013
40	SL	ST. LOUIS	MO 21 S	CST GREEN PARK RDE	38.53076	-90.34489			2/5/2013	2/5/2013
733	SL	ST. LOUIS	MO 21 S	CRD BAPTIST CHURCH RD S	38.52015	-90.36227	2/5/2013	2/5/2013		2/5/2013

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	NORTHBOUND INSTALLATION DATE	\qquad
2017	SL	ST. LOUIS	MO 21 S	CRD EAST CONCORD RD E	38.51876	-90.36434				2/5/2013
734	SL	ST. LOUIS	MO 21 S	CRD CONCORD SCHOOLRD E	38.51734	-90.36608	2/5/2013		2/5/2013	2/5/2013
732	SL	ST. LOUIS	MO 21S	CST KENNERLYRD E	38.50863	-90.37671			2/5/2013	2/5/2013
743	SL	ST. LOUIS	MO 21 S	CRD TOWNE SOUTH RD E	38.50407	-90.37987	2/5/2013	2/5/2013	2/5/2013	2/5/2013
736	SL	ST. LOUIS	MO 21 S	CRD BAUER RD E	38.49887	-90.38101			2/5/2013	2/5/2013
738	SL	ST. LOUIS	MO 21 S	CRD BUTLER HILL RD E	38.49520	-90.38155			2/5/2013	2/5/2013
737	SL	ST. LOUIS	MO 21 S	CRD OLD TESSON FERRY RDS	38.49311	-90.38189			2/5/2013	2/5/2013
740	SL	ST. LOUIS	MO21S	PVT CEDAR PLAZA SHOPPING CTR E	38.48726	-90.38327			2/5/2013	2/5/2013
742	SL	ST. LOUIS	MO 21 S	PVT MEDICAL CENTER RDE	38.48335	-90.38476	2/5/2013		2/5/2013	2/5/2013
741	SL	ST. LOUIS	MO 21 S	CRD SUSON HILLS DRE	38.47942	-90.39271	2/5/2013		2/5/2013	2/5/2013
2018	SL	ST. LOUIS	MO 21 S	CRD HAGEMANN DR S	38.47347	-90.39923			2/5/2013	2/5/2013
3018	SL	ST. LOUIS	MO21S	.006 mile(s) after CRD WALDEN RIDGE E	38.47006	-90.40089			10/3/2013	
4173	SL	ST. LOUIS	US 50E	US 67 S	38.55878	-90.40706	5/13/2012			
4157	SL	ST. LOUIS	US 50E	PVTSUNSET PLAZA E	38.55359	-90.40703	2/3/2012	2/3/2012	2/3/2012	2/3/2012
4156	SL	ST. LOUIS	US 50E	CSTE WATSON RDE	38.55109	-90.40705	2/3/2012	2/3/2012	2/3/2012	2/3/2012
4155	SL	ST. LOUIS	US 50E	CST EDDIE AND PARK RDE	38.54684	-90.40381	2/3/2012	2/3/2012		
4154	SL	ST. LOUIS	US 50E	CST DENNY RD E	38.53658	-90.38933	11/15/2010	11/15/2010		

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	\qquad
4145	SL	ST. LOUIS	US 50 E	MO 30E	38.53300	-90.38470	11/16/2010	11/16/2010	11/16/2010	11/16/2010
4147	SL	ST. LOUIS	US 50 E	CRD ROXANNA DR S	38.52821	-90.37549	11/22/2010	11/22/2010		
516	SL	ST. LOUIS	US 50 E	PVT HACKBERRY DRS	38.52618	-90.36595	11/3/2010	11/3/2010		
5921	SL	ST. LOUIS	US 50 E	CRD BAPTIST CHURCH RD S	38.52522	-90.36148	11/23/2010	11/23/2010		
11445	SL	ST. LOUIS	US 50 E	.011 mile(s) after CST FLORI DR S	38.51924	-90.34311	5/22/2012			
4144	SL	ST. LOUIS	US 50 E	. 022 mile(s) before CRD EAST CONCORD RDE	38.51495	-90.34260	5/22/2012	5/22/2012		
159	SL	ST. LOUIS	US 50E	CRD UNION RD S	38.50952	-90.33211	5/22/2012	5/22/2012		
5233	SL	ST. LOUIS	US 50E	CRD CORDES DR S	38.50745	-90.32861	5/22/2012	5/22/2012		
512	SL	ST. LOUIS	MO 109 S	OR 44E	38.50527	-90.62365	11/30/2015	11/30/2015	11/30/2015	11/30/2015
11765	SL	ST. LOUIS	MO 109 S	CST THE LEGENDS PKWY E	38.49416	-90.62948	5/29/2015			
5877	SL	ST. LOUIS	RT D E	CST FERGUSON AVES	38.67462	-90.30913	12/15/2021	12/15/2021	12/15/2021	12/15/2021
5823	SL	ST. LOUIS	MO 340 E	CST FROESEL DRE	38.59555	-90.58580	10/26/2015	10/26/2015	10/26/2015	10/26/2015
1379	SL	ST. LOUIS	MO 340 E	CST MARSH AVE E	38.59818	-90.58574	10/26/2015	10/26/2015		
5825	SL	ST. LOUIS	MO 340E	CST KEHRS MILL RDE	38.62160	-90.58208			8/11/2011	8/11/2011
5826	SL	ST. LOUIS	MO 340E	CSTCOUNTRY RIDGE DRE	38.62466	-90.58070	10/26/2015	10/26/2015	10/26/2015	10/26/2015
5827	SL	ST. LOUIS	MO 340E	CST CLARKSON WOODS DR E	38.62905	-90.57886	10/26/2015	10/26/2015		
2020	SL	ST. LOUIS	MO 340E	CSTSWINGLEY RIDGE RD E	38.65473	-90.55648			10/26/2015	10/26/2015

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
5832	SL	ST. LOUIS	MO 340E	CST APPALACHIAN TRL E	38.66239	-90.54335	10/26/2015	10/26/2015	10/26/2015	10/26/2015
1266	SL	ST. LOUIS	MO 340 E	CST LADUE BLUFFS CROSSING DRE	38.66966	-90.53453	10/26/2015	10/26/2015		
703	SL	ST. LOUIS	MO 340E	CST RIVER VALLEY DRS	38.68023	-90.50551	10/26/2015	10/26/2015		
5835	SL	ST. LOUIS	MO 340E	CST WOODS MILL RD S	38.67997	-90.49922	7/24/2012	7/24/2012	7/24/2012	
5258	SL	ST. LOUIS	MO 340 E	CSTWOODCHASELNS	38.68026	-90.49666	10/26/2015	10/26/2015	10/26/2015	10/26/2015
711	SL	ST. LOUIS	MO 340E	CST CREVE COEUR MILL RD S	38.68231	-90.48749	10/26/2015			
5833	SL	ST. LOUIS	MO 340E	CST FERNVIEW DR S	38.68256	-90.48049		10/26/2015		
709	SL	ST. LOUIS	MO 340 E	CRD FEE RD E	38.68119	-90.47698	10/26/2015	10/26/2015		
708	SL	ST. LOUIS	MO 340E	CRD TIMBER RUN DR S	38.67936	-90.47134	3/21/2014	3/21/2014		
5836	SL	ST. LOUIS	MO 340E	CSTMASON RD S	38.67816	-90.46880	10/26/2015	10/26/2015	10/26/2015	10/26/2015
712	SL	ST. LOUIS	MO 340E	CST HERITAGE PL E	38.67673	-90.46549	10/26/2015	10/26/2015		
705	SL	ST. LOUIS	MO 340 E	CST QUESTOVER LA S	38.67529	-90.46211	10/26/2015	10/26/2015		
707	SL	ST. LOUIS	MO 340E	CST TEMPO DR S	38.67383	-90.45843	10/26/2015	10/26/2015		
5347	SL	ST. LOUIS	MO 340 E	CST CROSS CREEK DR S	38.67316	-90.45468			10/26/2015	10/26/2015
716	SL	ST. LOUIS	MO 340 E	CST OLD BALLAS RD E	38.67095	-90.43854	10/26/2015	10/26/2015	10/26/2015	10/26/2015
717	SL	ST. LOUIS	MO 340 E	CRD CRAIG RD S	38.67124	-90.43543	10/26/2015	10/26/2015	10/26/2015	
7115	SL	ST. LOUIS	MO 340E	CST WEST OAK CENTER DR S	38.67114	-90.43362		10/26/2015	10/26/2015	10/26/2015

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{aligned} & \text { EASTBOUND } \\ & \text { INSTALLATION } \\ & \text { DATE } \end{aligned}$	WESTBOUND installation DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
722	SL	ST. LOUIS	MO 340E	CSTMOSLEY RDS	38.67145	-90.42956		10/26/2015		
13255	SL	ST. LOUIS	MO340E	PVTMARY MEADOWSS	38.67359	-90.42452	2/5/2013	2/5/2013		
13825	SL	ST. LOUIS	MO 340E	CSTNORTH GRAESER RDS	38.67335	-90.42195	2/5/2013	2/5/2013	2/5/2013	2/5/2013
715	SL	ST. LOUIS	MO340E	CSTN SPOEDE RDS	38.67320	-90.41490	2/5/2013	2/5/2013		
718	SL	ST. LOUIS	MO 340E	CSTOLD OLIVESTREET RD E	38.67321	-90.41337	2/5/2013	2/5/2013		
3184	SL	ST. LOUIS	MO 340E	.007 mile(s) before CST PAVILLIONDRS	38.67316	-90.40976	2/5/2013			
5838	SL	ST. LOUIS	MO 340E	CO OLD OLIVESTREETRDTO MO340WE	38.67303	-90.39984	2/5/2013			
5259	SL	ST. LOUIS	MO 340E	CSTROAD6S	38.67295	-90.39785		2/5/2013		
5343	SL	ST. LOUIS	MO 340E	CSTWARSON RDS	38.67262	-90.39482	6/20/2013	6/20/2013		
5345	SL	ST. LOUIS	MO340E	CSTOLD BONHOMMERDE	38.67306	-90.38986	2/5/2013	2/5/2013		
5344	SL	ST. LOUIS	MO 340E	CST INDIAN MEADOWSDRE	38.67413	-90.38359	2/5/2013	2/5/2013	2/5/2013	2/5/2013
5346	SL	ST. LOUIS	MO 340E	CSTDIELMAN RDS	38.67412	-90.37613	2/5/2013	2/5/2013	2/5/2013	2/5/2013
728	SL	ST. LOUIS	MO340E	CSTPRICERD S	38.67403	-90.36675		2/5/2013		
7106	SL	ST. LOUIS	MO340E	CST HILLTOP DRS	38.67405	-90.36445		2/5/2013	2/5/2013	2/5/2013
5793	SL	ST. LOUIS	MO 340E	CSTWOODSONRDS	38.67409	-90.35663	6/7/2010	6/7/2010	6/7/2010	6/7/2010
5794	SL	ST. LOUIS	MO 340E	CST82ND BLVD S	38.67366	-90.34869	6/8/2010			
5795	SL	ST. LOUIS	MO 340E	CST81STSTS	38.67335	-90.34544	6/8/2010	6/8/2010		

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	NORTHBOUND INSTALLATION DATE	\qquad
5796	SL	ST. LOUIS	MO 340 E	CST NORTH \& SOUTH RDS	38.67220	-90.33634	6/9/2010	6/9/2010	6/9/2010	6/9/2010
5797	SL	ST. LOUIS	MO 340 E	CST HANLEY RDS	38.67167	-90.33162	6/10/2010	6/10/2010	6/10/2010	6/10/2010
5798	SL	ST. LOUIS	MO 340 E	CST MIDLAND BLVD E	38.67115	-90.32611	2/5/2013	2/5/2013	2/5/2013	2/5/2013
5800	SL	ST. LOUIS	MO 340 E	CST PENNSYLVANIA AVES	38.66585	-90.31613	2/5/2013	2/5/2013		
5801	SL	ST. LOUIS	MO 340 E	CST OLIVE BLVDE	38.66329	-90.31089	2/5/2013	2/5/2013	2/5/2013	
349	SL	ST. LOUIS	MO 366E	CSTSUNSET OFFICE DR E	38.55514	-90.41037	10/27/2015	10/27/2015		
359	SL	ST. LOUIS	MO 366 E	RP US67 TO MO366E E	38.55540	-90.40773		10/27/2015		
2069	SL	ST. LOUIS	MO 366E	RP MO366E TO US67 N	38.55550	-90.40621	10/27/2015			
360	SL	ST. LOUIS	MO 366E	CSTSTURDY DR S	38.55632	-90.39511	10/27/2015	10/27/2015		
5413	SL	ST. LOUIS	MO 366 E	CST GLENWOOD DRE	38.55685	-90.38765	10/27/2015	10/27/2015		
352	SL	ST. LOUIS	MO 366 E	CST OLD SAPPINGTON RD S	38.55722	-90.38158		10/27/2015		
351	SL	ST. LOUIS	MO 366E	PVTCRESTWOOD PLAZAS	38.55841	-90.37768		10/27/2015		
357	SL	ST. LOUIS	MO 366E	CST CRESTVIEW LNS	$\begin{array}{\|c\|} 38.55974146 \\ 16382 y \end{array}$	-90.37442		10/27/2015		
356	SL	ST. LOUIS	MO 366 E	PVTWATSON INDUSTRIAL RD E	38.56062	-90.37225	10/27/2015	10/27/2015		
348	SL	ST. LOUIS	MO 366 E	CST GRANT RD S	38.56235	-90.36799	10/27/2015	10/27/2015	10/27/2015	10/27/2015
5653	SL	ST. LOUIS	MO 366 E	CST SO ELM AVES	38.56486	-90.35908	10/27/2015	10/27/2015	10/27/2015	10/27/2015
353	SL	ST. LOUIS	MO 366 E	CST CHESHIRE LNS	38.56614	-90.35119	10/27/2015	10/27/2015	10/27/2015	10/27/2015

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { NORTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	\qquad
1660	SL	ST. LOUIS	MO 366E	PVTMACKENZIE POINTE E	38.58143	-90.32088	10/27/2015			
1458	SL	ST. LOUIS	RT ACS	.002 mile(s) after CST POHLMAN RDE	38.78356	-90.27917			12/1/2016	12/1/2016
5874	SL	ST. LOUIS	RT ACS	CST LUCAS \& HUNT RD S	38.74251	-90.25222			11/7/2016	
504	SL	ST. LOUIS	RT N S	CSTEVANS LN E	38.72512	-90.30391			11/2/2016	11/2/2016
3623	SL	ST. LOUIS	RTUS	RP RTU TO IS70W W	38.71150	-90.28537			11/1/2017	
264	SL	ST. LOUIS	MO 180 E	CST FEE RD S	38.74041	-90.40376	10/26/2015	10/26/2015	10/26/2015	
2994	SL	ST. LOUIS	MO 180 E	. 011 mile(s) after PVT SCHNUCKS/HOME DEPOTS	38.73916	-90.40158	10/26/2015	10/26/2015		
265	SL	ST. LOUIS	MO 180 E	RP US67S TO MO180E E	38.73802	-90.39965		10/26/2015		
285	SL	ST. LOUIS	MO 180 E	RP US67NTO MO180EE	38.73745	-90.39865	10/26/2015			
268	SL	ST. LOUIS	MO 180 E	CSTADIE RD S	38.73476	-90.39396	10/26/2015	10/26/2015	10/26/2015	
267	SL	ST. LOUIS	MO 180 E	CST CYPRESS RDS	38.73282	-90.39053	10/26/2015	10/26/2015		
1685	SL	ST. LOUIS	MO 180 E	CSTST TIMOTHY S	38.73144	-90.38801	10/26/2015	10/26/2015		
284	SL	ST. LOUIS	MO 180 E	CSTASHBYRDS	38.73020	-90.38583	10/26/2015	10/26/2015		
276	SL	ST. LOUIS	MO 180 E	CSTSAN CARLOS LNE	38.72880	-90.38339	10/26/2015	10/26/2015		
275	SL	ST. LOUIS	MO 180E	CSTST GREGORYCTS	38.72659	-90.37946	10/26/2015	10/26/2015	10/26/2015	10/26/2015
274	SL	ST. LOUIS	MO 180 E	CST WISMER RD S	38.72286	-90.37289	10/26/2015			
273	SL	ST. LOUIS	MO 180E	CST LYNN TOWNDRS	38.72076	-90.36897	10/26/2015	10/26/2015		

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	$\begin{gathered} \text { SOUTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{gathered}$
272	SL	ST. LOUIS	MO 180 E	.002 mile(s) before CST EDMUNDSONRDS	38.71853	-90.36476	10/26/2015			
261	SL	ST. LOUIS	MO 180 E	RT EE S	38.71587	-90.35979	10/26/2015	10/26/2015	10/26/2015	10/26/2015
3499	SL	ST. LOUIS	MO 180 E	PVTST JOHN CROSSINGS S	38.71231	-90.35322		10/26/2015		
271	SL	ST. LOUIS	MO 180 E	CST BROWNRD S	38.71073	-90.35029	10/26/2015	10/26/2015		
270	SL	ST. LOUIS	MO 180 E	CST MC KIBBON AVES	38.70823	-90.34574	10/26/2015	10/26/2015		
94	SL	ST. LOUIS	MO 367 S	CSTCOMET DRE	38.75444	-90.23880	5/23/2012	5/23/2012	5/23/2012	5/23/2012
5901	SL	ST. LOUIS	MO 367 S	CST NORTHUMBERLAND DRE	38.74692	-90.23976	5/23/2012		5/23/2012	
5873	SL	ST. LOUIS	MO 367 S	CSTST CYR RD E	38.73521	-90.24127	5/23/2012	5/23/2012	5/23/2012	5/23/2012
3931	SL	ST. LOUIS	RT ABE	OR 270E	38.65549	-90.44991	12/14/2017			
2419	SL	ST. LOUIS	RT ABE	RP RTAB TO IS270W W	38.65549	-90.44896		12/14/2017		
1262	SL	ST. LOUIS	MO 231 S	CRD HOFFMEISTER AVE E	38.53341	-90.27536	10/26/2015	10/26/2015	10/26/2015	10/26/2015
1387	SL	ST. LOUIS	MO 231 S	CRD RIPA AVE E	38.52431	-90.27727			9/1/2018	9/1/2018
10685	SL	ST. LOUIS	MO 231 S	CRD KINGSTON DRE	38.51215	-90.29056			10/26/2015	
301	SL	ST. LOUIS	MO 231 S	CRD JEFFERSONIAN DR E	38.51076	-90.29199			10/26/2015	10/26/2015
10686	SL	ST. LOUIS	MO 231 S	CRD SAPPINGTON BARRACKS RDE	38.50237	-90.29782	10/26/2015	10/26/2015	10/26/2015	10/26/2015
3083	SL	ST. LOUIS	MO 231 S	OR 255 S	38.49740	-90.30059			10/26/2015	
3087	SL	ST. LOUIS	MO 231 S	CRD POTTLE AVE E	38.48519	-90.30427			10/26/2015	10/26/2015

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	\qquad
3088	SL	ST. LOUIS	MO 231 S	CRD YAEGER RDE	38.47770	-90.30440	10/26/2015	10/26/2015	10/26/2015	10/26/2015
3089	SL	ST. LOUIS	MO 231 S	PVTCOPPERGATESQUARE DR E	38.47302	-90.30442			10/26/2015	10/26/2015
3094	SL	ST. LOUIS	MO 231 S	CRD CLIFF CAVE RDE	38.47030	-90.30494			10/26/2015	10/26/2015
3095	SL	ST. LOUIS	MO 231 S	CRD GEBHARDT DR E	38.46820	-90.30556	10/26/2015		10/26/2015	10/26/2015
13955	SL	ST. LOUIS	MO 231 S	.003 mile(s) before PVT OAKVILLE MIDDLE SCHOOLE	38.46066	-90.30607			8/11/2011	8/11/2011
3867	SL	ST. LOUIS	MO 231 S	CRD ERB RD E	38.45553	-90.30631			10/26/2015	
2753	SL	ST. LOUIS	MO 231 S	.023 mile(s) after CRD CHRISTOPHER DR S	38.45076	-90.30691				10/26/2015
2754	SL	ST. LOUIS	MO 231 S	CRD BEAR CREEK DRE	38.44289	-90.31938		10/26/2015	10/26/2015	10/26/2015
5255	SL	ST. LOUIS	MO 231 S	.002 mile(s) before CRD WINDING CREEK WAYS	38.44129	-90.32136			10/26/2015	10/26/2015
2813	SL	ST. LOUIS	MO 231S	CRD TOLLGATE RDE	38.43736	-90.32575	10/26/2015	10/26/2015	10/26/2015	10/26/2015
306	SL	ST. LOUIS	MO 267 S	CRD BUCKLEY RD S	38.51911	-90.30662		8/22/2012	8/22/2012	8/22/2012
14475	SL	ST. LOUIS	MO 141 S	CST CORPORATE WOODS TRLE	38.78784	-90.45780	1/29/2019	1/29/2019	1/29/2019	1/29/2019
10593	SL	ST. LOUIS	MO 141 S	CSTST CHARLES ROCK RD E	38.77915	-90.45948			1/29/2019	1/29/2019
12719	SL	ST. LOUIS	MO 141 N	CRD RIDER TRAIL SOUTH W	38.76259	-90.45545	1/29/2019			
10591	SL	ST. LOUIS	MO 141 N	CRD LAKEFRONT DR W	38.76635	-90.45614	1/29/2019			
1629	SL	ST. LOUIS	MO 141 N	CST MISSOURI BOTTOM RD E	38.79385	-90.45079			7/8/2019	

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{gathered} \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{gathered}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
1495	SL	ST. LOUIS	MO 100 E	CSTRUCK RD E	38.58958	-90.59883	5/1/2019	5/1/2019		5/1/2019
1645	SL	ST. LOUIS	MO 100 E	.001 mile(s) before PVT BEST BUY S	38.59270	-90.57729	2/3/2012	2/3/2012		
184	SL	ST. LOUIS	MO 100 E	PVT BALLWIN PLAZAS	38.59280	-90.56447	2/3/2012	2/3/2012		
189	SL	ST. LOUIS	MO 100 E	CST NEW BALLWIN RD S	38.59286	-90.55761	5/3/2012	5/3/2012		
185	SL	ST. LOUIS	MO 100 E	CST HOLLOWAY RD S	38.59296	-90.54644	2/3/2012			
3479	SL	ST. LOUIS	MO 100 E	CST BALLPARK DR S	38.59297	-90.54333	2/3/2012	2/3/2012		
3986	SL	ST. LOUIS	MO 100 E	CST SEVEN TRAILS DR S	38.59298	-90.53771	2/3/2012	2/3/2012		
187	SL	ST. LOUIS	MO 100 E	CST GRANDPAS S	38.59297	-90.52996	2/3/2012	2/3/2012		
183	SL	ST. LOUIS	MO 100 E	CST BAXTER RD S	38.59320	-90.52078	2/3/2012	2/3/2012		
186	SL	ST. LOUIS	MO 100 E	CST HENRY AVES	38.59309	-90.51608	2/3/2012	2/3/2012	2/3/2012	2/3/2012
2166	SL	ST. LOUIS	MO 100 E	CST OLD MERAMEC STATION RDS	38.59290	-90.51169	2/3/2012	2/3/2012		
1686	SL	ST. LOUIS	MO 100 E	CST ENCHANTED PKWYS	38.59263	-90.50192	2/3/2012	2/3/2012		2/3/2012
191	SL	ST. LOUIS	MO 100 E	PVTKNOLLHAVEN DR S	38.59313	-90.49962	2/3/2012	2/3/2012		
195	SL	ST. LOUIS	MO 100 E	CRD BRAESHIRE DR S	38.59407	-90.49620	2/3/2012	2/3/2012		
190	SL	ST. LOUIS	MO 100 E	CRD WEIDMAN RDS	38.59547	-90.49109	2/3/2012	2/3/2012		
192	SL	ST. LOUIS	MO 100 E	PVTMANCHESTER MEADOWS S	38.59661	-90.48516		2/3/2012		

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	\qquad	$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
194	SL	ST. LOUIS	MO 100 E	CST MASON RD S	38.59606	-90.47954	2/3/2012	2/3/2012		
202	SL	ST. LOUIS	MO 100 E	CST BLASE AVES	38.60261	-90.43887	10/27/2015	10/27/2015		
203	SL	ST. LOUIS	MO 100 E	CST LINDEMANNRD S	38.60166	-90.43464	1/22/2013	1/22/2013		
204	SL	ST. LOUIS	MO 100 E	CST BOPP RD S	38.60109	-90.43204	1/22/2013	1/22/2013		
5913	SL	ST. LOUIS	MO 100 E	CST WOODGATE DR S	38.59942	-90.42444	10/27/2015			
1624	SL	ST. LOUIS	MO 100 E	CST GEYER RD S	38.59880	-90.41583	10/27/2015	10/27/2015	10/27/2015	10/27/2015
206	SL	ST. LOUIS	MO 100 E	CST NO WOODLAWN AVES	38.60077	-90.39683	4/13/2012	4/13/2012		
3659	SL	ST. LOUIS	MO 100 E	CST LACLEDE STATION RD S	38.61327	-90.32850	7/28/2017	7/28/2017	7/28/2017	7/28/2017
2923	SL	ST. LOUIS	MO 30E	CRD SAPPINGTON RDS	38.53623	-90.38002		10/26/2015	10/26/2015	10/26/2015
2950	SL	ST. LOUIS	MO 30E	CST EDDIE AND PARK RDE	38.54204	-90.36307	10/26/2015			
3868	SL	ST. LOUIS	MO 30 E	.01 mile(s) before CRD MUSICK RDS	38.54568	-90.35204		1/9/2020		
3349	SL	ST. LOUIS	MO 30E	CST GRANT RD E	38.54711	-90.34770	10/26/2015	10/26/2015	10/26/2015	10/26/2015
2943	SL	ST. LOUIS	MO 30E	CST LACLEDE STATION RD S	38.54871	-90.34294	10/26/2015			
2944	SL	ST. LOUIS	MO 30E	CRD VALCOUR AVES	38.55067	-90.33625	10/26/2015	10/26/2015		
2947	SL	ST. LOUIS	MO 30E	CRD WEBER RD E	38.55508	-90.31452	10/26/2015	10/26/2015		
3279	SL	ST. LOUIS	MO 30 E	CRD HEEGE RD E	38.55895	-90.30236		10/26/2015		
2949	SL	ST. LOUIS	MO 30E	CRD SEIBERT AVE W	38.55973	-90.30108	6/1/2015			

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	WESTBOUND installation DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
656	SL	ST. LOUIS	MO 115 S	RP MO115N TO IS170E E	38.72017	-90.33266			1/11/2022	
3167	SL	ST. LOUIS	MO 115 S	CST CLEARVIEW DRS	38.70704	-90.31458			12/21/2016	12/21/2016
1394	SL	ST. LOUIS	MO 115 S	CSTARLMONT DRS	38.70698	-90.31136			12/21/2016	12/21/2016
102	SL	ST. LOUIS	MO115S	. 002 mile(s) after PVT NORMANDYMIDDLE SCHOOLS	38.70732	-90.30792			12/22/2016	12/22/2016
5876	SL	ST. LOUIS	$\begin{gathered} \hline \text { AIRFLIGHT } \\ \text { DRS } \end{gathered}$	RP AIRFLIGHT DR TO LAMBERT intl blvDe	38.73974	-90.36619			11/27/2017	
544	SL	ST. LOUIS	$\begin{gathered} \hline \text { AIRPORT } \\ \text { RDE } \end{gathered}$	RP IS170W TO AIRPORTRDE	38.74965	-90.33726	11/27/2017			
3784	SL	ST. LOUIS	REAVIS BARRACKS RDE	RP BARRACKS RD TO IS55SS	38.53328	-90.31241		11/27/2017		
10695	SL	ST. LOUIS	REAVIS BARRACKS RDE	RP IS55N TO BARRACKSRDE	38.53266	-90.31107	11/27/2017			
649	SL	ST. LOUIS	BAYLESS AVE E	RP BAYLESS AVETO IS55SS	38.54734	-90.29067		8/29/2012		
648	SL	ST. LOUIS	BAYLESS AVEE	RP IS55N TO BAYLESS AVEN	38.54683	-90.28972	8/29/2012			
5643	SL	ST. LOUIS	BELLEFON AINE RD S	RP IS270ETO BELLEFONTAINE RDE	38.76943	-90.22086				11/27/2017
4038	SL	ST. LOUIS	$\begin{gathered} \hline \text { CYPRESS } \\ \text { RDS } \end{gathered}$	RP CYPRESS RDTO IS70E E	38.74241	-90.38589			1/13/2016	1/13/2016

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
16764	SL	ST. LOUIS	$\begin{array}{\|c\|} \hline \text { DES PERES } \\ \text { RDS } \end{array}$	PVT DAYLIGHTLNE	38.60661	-90.45340			5/17/2017	5/17/2017
4071	SL	ST. LOUIS	$\begin{array}{\|c} \hline \text { DES PERES } \\ \text { RDS } \end{array}$.005 mile(s) before RP MO100WTO DES PERES RD S	38.60489	-90.45501			5/17/2017	5/17/2017
4069	SL	ST. LOUIS	$\begin{gathered} \hline \text { DES PERES } \\ \text { RDS } \end{gathered}$	RP MO100E TO DES PERES RD S	38.60051	-90.45534			11/27/2017	
3247	SL	ST. LOUIS	Elmaves	RP IS44W TO ELM AVEN	38.58084	-90.35963			11/27/2017	
4705	SL	ST. LOUIS	KEHRS MILL RDE	CST WILD HORSE CREEK RDE	38.65751	-90.61839	7/1/2013			
260	SL	ST. LOUIS	$\begin{array}{\|c\|} \hline \text { LADUE RD } \\ \mathrm{E} \end{array}$	RP LADUE RDTO IS170EE	38.65336	-90.35467	12/5/2014	12/5/2014		
4817	SL	ST. LOUIS	LILAC AVES	RP IS270W TO LILAC AVEW	38.76784	-90.20282			11/27/2017	
4816	SL	ST. LOUIS	LILAC AVES	RP IS270E TO LILAC AVEE	38.76664	-90.20302				11/27/2017
5924	SL	ST. LOUIS	$\begin{array}{\|c\|} \hline \text { MASONRD } \\ \mathrm{S} \end{array}$	OR64E	38.64001	-90.48083				6/9/2016
5927	SL	ST. LOUIS	$\begin{array}{\|c\|} \hline \text { MASONRD } \\ \mathrm{S} \end{array}$	OR64E	38.63934	-90.48080			6/9/2016	
1150	SL	ST. LOUIS	MERAMEC BOTTOM RDE	RP MERAMEC BOTTOM RD TO IS55SS ISJSSS	38.46197	-90.37533		11/27/2017		
1151	SL	ST. LOUIS	MERAMEC BOTTOM RDE	RP IS55N TO MERAMEC BOTTOM RDE	38.46161	-90.37309	11/27/2017			

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE		WESTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { NORTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{gathered} \text { SOUTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{gathered}$
15355	SL	ST. LOUIS	MCKNIGHT RDS	RP MCKNIGHT RDTO IS170W W	38.66143	-90.35717			9/1/2014	
76	SL	ST. LOUIS	$\begin{gathered} \hline \text { BIG BEND } \\ \text { RDE } \end{gathered}$	RP IS44E TO BIG BEND BLVD E	38.56789	-90.39292	11/27/2017			
5939	SL	ST. LOUIS	PEAR TREE DRE	RP IS70E TO PEAR TREE DR E	38.73849	-90.36832		11/27/2017		
5930	SL	ST. LOUIS	$\begin{gathered} \hline \text { SO BERRY } \\ \text { RDS } \end{gathered}$	RP SO BERRY RD TO IS44E E	38.57550	-90.37728				6/18/2019
3248	SL	ST. LOUIS	SO ELM AVE S	RP IS44E TO SO ELM AVE E	38.57985	-90.35951				11/27/2017
5525	SL	ST. LOUIS	N OR 270 E	CST WEST FLORISSANT AVES	38.77171	-90.27995			11/27/2017	11/27/2017
16763	SL	ST. LOUIS	N OR 44E	CST WORKMAN RDS	38.50477	-90.66714	1/19/2018			
5526	SL	ST. LOUIS	S OR 270 E	CST WEST FLORISSANT AVES	38.76986	-90.28009	11/27/2017	11/27/2017	11/27/2017	
3206	SL	ST. LOUIS	S OR 70E	CSTEDMUNDSON RDS	38.73852	-90.36414		11/27/2017		
11925	SL	ST. LOUIS	W OR 367 S	CRD PARKER RD E	38.79575	-90.23058		11/27/2017		
11929	SL	ST. LOUIS	W OR 367 S	OR 270 E	38.77929	-90.23746		11/27/2017		
11928	SL	ST. LOUIS	E OR 367 N	OR 270 E	38.77903	-90.23640	11/27/2017			
11930	SL	ST. LOUIS	E OR 367 N	CRD REDMAN RD E	38.78550	-90.23391	11/27/2017			
5940	SL	ST. LOUIS	S NEW BALLAS RD S	CST CONWAYRD E	38.64161	-90.44347		7/1/2015		7/1/2015
5863	SL	ST. LOUIS CITY	RT DE	CST KIENLEN AVE S	38.67048	-90.28982	10/21/2013	10/21/2013	10/21/2013	10/21/2013

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
4593	SL	ST. LOUIS CITY	RT D E	CST HODIAMONTAVES	38.67002	-90.28898	10/21/2013	10/21/2013		
4596	SL	ST. LOUIS CITY	RT D E	CSTCLARA AVES	38.66500	-90.27967			4/9/2018	
4597	SL	ST. LOUIS CITY	RT D E	CST BELTAVE S	38.66312	-90.27617	4/9/2018	4/9/2018		
4598	SL	ST. LOUIS CITY	RT D E	CST UNION BLVD S	38.66091	-90.27202			10/21/2013	10/21/2013
4600	SL	ST. LOUIS CITY	RT D E	CST KINGSHIGHWAY BLVDS	38.65990	-90.26211	4/9/2018	4/9/2018	4/9/2018	4/9/2018
4613	SL	ST. LOUIS CITY	RT D E	CST NEWSTEAD AVES	38.65437	-90.24662	7/8/2015	7/8/2015	7/8/2015	7/8/2015
4617	SL	ST. LOUIS CITY	RT D E	CSTVANDEVENTER AVES	38.64879	-90.23389			1/27/2016	1/27/2016
4619	SL	ST. LOUIS CITY	RT D E	CST GRAND BLVD S	38.64588	-90.22730			4/9/2018	4/9/2018
4622	SL	ST. LOUIS CITY	RT D E	CST 14TH STS	38.63477	-90.19803	2/29/2016	2/29/2016		
4558	SL	ST. LOUIS CITY	MO 100 E	CST KNOX AVES	38.62223	-90.29007		11/27/2017		
4559	SL	ST. LOUIS CITY	MO 100 E	CSTSULPHUR AVE S	38.62264	-90.28637	11/27/2017	11/27/2017		
7166	SL	ST. LOUIS CITY	MO 100 E	CST SUBLETTE AVE S	38.62332	-90.28061		11/27/2017		
4560	SL	ST. LOUIS CITY	MO 100 E	CSTMACKLIND AVES	38.62390	-90.27572	11/27/2017	11/27/2017		
7185	SL	ST. LOUIS CITY	MO 100 E	CST BARRON AVE S	38.62425	-90.27281		11/27/2017		
4564	SL	ST. LOUIS CITY	MO 100 E	CST TOWER GROVE AVES	38.62701	-90.25689	2/4/2013	2/4/2013		
4565	SL	ST. LOUIS CITY	MO 100 E	CST BOYLEAVES	38.62738	-90.25421	2/4/2013	2/4/2013		
4566	SL	ST. LOUIS CITY	MO 100 E	CSTN SARAH STS	38.62790	-90.25020	11/27/2017	11/27/2017		
4570	SL	ST. LOUIS CITY	MO 100 E	CST GRAND BLVD S	38.62601	-90.23670	1/1/2014	1/1/2014		1/1/2014

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	NORTHBOUND INSTALLATION DATE	\qquad
4571	SL	ST. LOUIS CITY	MO 100 E	CSTCOMPTON AVES	38.62450	-90.22946	10/21/2010	10/21/2010		10/21/2010
4572	SL	ST. LOUIS CITY	MO 100 E	CSTJEFFERSON AVES	38.62224	-90.21857	1/1/2014	1/1/2014	1/1/2014	1/1/2014
4575	SL	ST. LOUIS CITY	MO 100 E	CST 18TH STS	38.62007	-90.20813	1/1/2014	1/1/2014	1/1/2014	1/1/2014
4576	SL	ST. LOUIS CITY	MO 100 E	CST 14TH STS	38.61932	-90.20453	1/1/2014	1/1/2014	1/1/2014	1/1/2014
4578	SL	ST. LOUIS CITY	MO 100 E	CSTS 7TH BLVD S	38.61756	-90.19568	1/1/2014	1/1/2014		
13275	SL	ST. LOUIS CITY	MO 100 E	CST4TH ST N	38.61706	-90.19294	12/14/2017			
4193	SL	ST. LOUIS CITY	MO 30E	CST RIVER DES PERES BLVD E	38.56313	-90.29587	3/8/2018	3/8/2018	3/8/2018	3/8/2018
4197	SL	ST. LOUIS CITY	MO 30E	CST GERMANIA AVE E	38.56429	-90.29420	3/8/2018		3/8/2018	3/8/2018
4426	SL	ST. LOUIS CITY	MO 30E	CST CHRISTY BLVD S	38.57668	-90.27580	3/8/2018	3/8/2018		
4404	SL	ST. LOUIS CITY	MO 30E	CST BATES ST E	38.57786	-90.27202	3/8/2018	3/8/2018		
4443	SL	ST. LOUIS CITY	MO 30E	CST MORGANFORD RD S	38.58120	-90.26731		5/30/2017		
4425	SL	ST. LOUIS CITY	MO 30E	CSTCHEROKEESTE	38.59519	-90.24050		10/17/2017		
4447	SL	ST. LOUIS CITY	MO 30E	CST UTAH ST E	38.59673	-90.23821	6/15/2017	6/15/2017		
4448	SL	ST. LOUIS CITY	MO 30E	CST WYOMING STE	38.59830	-90.23613	6/15/2017	6/15/2017		
4405	SL	ST. LOUIS CITY	MO 30E	CSTCALIFORNIA AVES	38.60271	-90.22816	6/15/2017	6/15/2017		
4450	SL	ST. LOUIS CITY	MO 30E	CSTMAGNOLIA AVEE	38.60342	-90.22651	6/16/2017	6/16/2017		
6465	SL	ST. LOUIS CITY	MO 30E	CST MC NAIR AVES	38.60682	-90.21794		6/16/2017		
4372	SL	ST. LOUIS CITY	MO 30E	CST RUSSELL BLVD E	38.60848	-90.21235			6/19/2017	6/19/2017

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
5882	SL	ST. LOUIS CITY	MO 115 S	CST CLARA AVES	38.68291	-90.26639			5/13/2015	
4645	SL	ST. LOUIS CITY	MO 115 S	CST BELTAVE S	38.68168	-90.26379			6/19/2015	6/19/2015
4663	SL	ST. LOUIS CITY	MO 115 S	PVTSCHNUCKS PLAZA S	38.68010	-90.26016			6/18/2015	
5883	SL	ST. LOUIS CITY	MO 115 S	CST UNION BLVD S	38.67928	-90.25825	3/12/2015	3/12/2015	3/12/2015	3/12/2015
4648	SL	ST. LOUIS CITY	MO 115 S	CST KINGSHIGHWAY BLVDS	38.67640	-90.25192			6/11/2015	6/11/2015
4650	SL	ST. LOUIS CITY	MO 115 S	CSTSHREVE AVE S	38.67373	-90.24576			1/7/2019	1/7/2019
5865	SL	ST. LOUIS CITY	MO 115 S	CST TAYLOR AVES	38.67107	-90.23936			1/7/2019	
5866	SL	ST. LOUIS CITY	MO 115 S	CST NEWSTEAD AVE S	38.66978	-90.23647	1/7/2019	1/7/2019	1/7/2019	1/7/2019
5869	SL	ST. LOUIS CITY	MO 115 S	CST PRAIRIEAVES	38.66274	-90.22035			2/4/2019	
4661	SL	ST. LOUIS CITY	MO 115 S	CST GRAND BLVD S	38.66115	-90.21677	1/7/2019	1/7/2019	1/7/2019	1/7/2019
4643	SL	ST. LOUIS CITY	MO 115 S	CST GARRISON AVES	38.66028	-90.21476				1/7/2019
4660	SL	ST. LOUIS CITY	MO 115 S	CST GLASGOW AVES	38.65959	-90.21319			1/7/2019	1/7/2019
4659	SL	ST. LOUIS CITY	MO 115 S	CST FARRARSTE	38.65868	-90.21135			1/7/2019	
16775	SL	ST. LOUIS CITY	$\begin{gathered} \text { BOYLE AVE } \\ \mathrm{S} \end{gathered}$	RP IS64W TO BOYLE AVE N	38.63163	-90.25314			11/24/2015	
16777	SL	ST. LOUIS CITY	CARRIE AVE E	RP CARRIE AVE TO IS70W W	38.68448	-90.21903	5/24/2018			
9074	SL	ST. LOUIS CITY	WASHINGTON AVE E	OR 44 W	38.62965	-90.18619		6/23/2016		

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND installation DATE	SOUTHBOUND INSTALLATION DATE
2784	SL	ST. LOUIS CITY	GRAND BLVDS	CST LAFAYETTEAVEE	38.61706	-90.23936			10/3/2017	10/3/2017
2785	SL	ST. LOUIS CITY	$\begin{aligned} & \hline \text { GRAND } \\ & \text { BLVD S } \end{aligned}$	CSTDE TONTYSTE	38.61615	-90.23946				10/3/2017
1755	SL	ST. LOUIS CITY	JEFFERSON AVES	.009 mile(s) after RP JEFFERSON AVE TO IS64W W	38.62789	-90.21747			6/9/2014	
16776	SL	ST. LOUIS CITY	CSTCASS AVE W	.001 mile(s) after CSTTUCKER BLVDS	38.64062	-90.19191			1/6/2014	1/6/2014
4618	SL	ST. LOUIS CITY	RT DE	CSTSPRING AVES	38.64680	-90.22939			1/27/2016	

Southwest District

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	NORTHBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { SOUTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$
5613	SW	BARRY	US 60E	CSTLOWES LNS	36.91370	-93.89624	7/29/2020	7/29/2020	7/29/2020	7/29/2020
2797	SW	BENTON	MO 7 S	CST ROUTE 7 E	38.25309	-93.36703	12/20/2019	12/20/2019	12/20/2019	12/20/2019
4203	SW	CEDAR	US 54E	MO 82 E	37.86310	-94.02222	6/19/2019	6/19/2019		6/19/2019
1898	SW	CEDAR	US 54 E	CSTPARK STS	37.86297	-94.01840	6/4/2019	6/4/2019		
3419	SW	CEDAR	US 54E	MO 32 E	37.86275	-94.01232	6/4/2019	6/4/2019	6/4/2019	6/4/2019
7495	SW	CHRISTIAN	MO 14E	BU 65 S	37.00432	-93.20589	5/13/2020	5/13/2020		
7095	SW	CHRISTIAN	BU 65 S	CSTS 17TH ST S	37.00459	-93.22158	5/13/2020	5/13/2020	5/13/2020	5/13/2020
3389	SW	CHRISTIAN	RT J E	CRD N 17TH ST S	37.07006	-93.22377			6/20/2016	6/20/2016
16416	SW	CHRISTIAN	RT CCE	CSTN 22ND STS	37.07026	-93.23267	12/14/2017	12/14/2017	12/14/2017	12/14/2017
8587	SW	CHRISTIAN	US 160 E	CRD TRACKER RD E	37.06559	-93.30343	5/19/2020	5/19/2020		5/19/2020
2157	SW	CHRISTIAN	US 160E	CST KATHRYNSTE	37.06012	-93.30355	5/19/2020	5/19/2020	5/19/2020	5/19/2020
1074	SW	CHRISTIAN	US 160E	CST NORTHVIEW RD E	37.05459	-93.30372			5/20/2020	5/19/2020
1072	SW	CHRISTIAN	US 160E	CST WASSON DRE	37.04737	-93.30342	5/19/2020	5/19/2020	5/19/2020	5/19/2020
2130	SW	CHRISTIAN	US 160E	RT EE E	36.92739	-93.28429	5/11/2015	5/12/2015		
865	SW	GREENE	MO 13 S	CSTATLANTIC STE	37.23358	-93.31129			6/22/2020	6/22/2020
866	SW	GREENE	MO 13 S	. 004 mile(s) after CST NICHOLS ST E	37.21889	-93.31199			7/1/2018	7/1/2018

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { WESTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
7928	SW	GREENE	RT YY E	CST DIVISIONST E	37.22426	-93.22609		9/3/2018		
8495	SW	GREENE	RT YYE	RP US65NTO RTYY E	37.22421	-93.22448	9/3/2018			
794	SW	GREENE	LP 44E	CST BROADWAY AVE S	37.21421	-93.30307	7/1/2018	7/1/2018		
797	SW	GREENE	LP 44 E	CST MAINAVE S	37.21543	-93.29626	7/1/2018	7/1/2018		
795	SW	GREENE	LP 44E	CSTCAMPBELL AVEN	37.21543	-93.29402	7/1/2018			
796	SW	GREENE	LP 44E	CSTBOONVILLEAVES	37.21542	-93.29237	7/1/2018	7/1/2018	7/1/2018	7/1/2018
799	SW	GREENE	LP 44E	CST JEFFERSON AVES	37.21536	-93.28948		7/1/2018		
801	SW	GREENE	LP 44E	CST BENTON AVES	37.21516	-93.28767	7/1/2018	7/1/2018	7/1/2018	7/1/2018
802	SW	GREENE	LP 44E	CSTFREMONTAVES	37.21472	-93.27086	7/1/2018	7/1/2018		
891	SW	GREENE	MO 744E	CST BROADWAY AVES	37.24080	-93.30202	7/27/2015	7/27/2015	7/27/2015	7/27/2015
16067	SW	GREENE	MO 744E	CST PACKER RDS	37.23917	-93.23384	10/5/2016	10/5/2016	10/5/2016	10/5/2016
2128	SW	GREENE	MO 744E	CST MAYFAIR AVES	37.23901	-93.22918	4/4/2015			
15838	SW	GREENE	MO 744E	. 009 mile(s) before RTOO E	37.24738	-93.18351	5/5/2016	5/5/2016		
16418	SW	GREENE	BU 65 S	CST FRISCO S	37.20969	-93.22826	4/25/2018	4/25/2018	4/25/2018	4/25/2018
790	SW	GREENE	BU 65 S	CST BELCREST AVES	37.20995	-93.23431	7/1/2018	7/1/2018		
793	SW	GREENE	BU 65 S	CST N PRINCE LNS	37.21001	-93.23634	7/1/2018	7/1/2018		
836	SW	GREENE	BU 65 S	CST CINDERELLA STE	37.18589	-93.26223	7/1/2018	7/1/2018	7/1/2018	7/1/2018
7459	SW	GREENE	BU 65 S	CSTCHEROKEESTE	37.17823	-93.26240			7/1/2018	7/1/2018

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	\qquad
7461	SW	GREENE	BU 65 S	CSTSEMINOLE STE	37.17433	-93.26248	7/1/2018	7/1/2018	7/1/2018	7/1/2018
11077	SW	GREENE	RT EE E	CST N ALLIANCEAVES	37.22724	-93.37903	9/28/2017	9/28/2017	9/28/2017	9/28/2017
14026	SW	GREENE	RTHS	LP 44 W	37.24893	-93.26182				12/12/2016
16415	SW	GREENE	MO 125 S	.001 mile(s) before RP MO125 TO IS44E E	37.27174	-93.11341				1/15/2018
811	SW	GREENE	RT DE	CSTVENTURA AVES	37.18087	-93.24307	8/29/2018	8/29/2018		
7945	SW	GREENE	US 60 E	RT M E	37.14570	-93.42896			12/5/2017	12/5/2017
8505	SW	GREENE	US 160E	RT Z S	37.29892	-93.43308	8/18/2020	8/18/2020	8/18/2020	8/18/2020
8506	SW	GREENE	US 160E	CST MILLER RD S	37.29871	-93.42395	4/30/2020	4/30/2020	4/30/2020	4/30/2020
14989	SW	GREENE	US 160 E	RP US160E TO IS44E E	37.24467	-93.34836	3/2/2016			
11295	SW	GREENE	US 160E	CSTWEAVER RDE	37.12462	-93.29656		7/25/2012		
15956	SW	GREENE	MO 413 N	PVT UNKNOWNS	37.18071	-93.36182	7/10/2018	7/10/2018		
8666	SW	GREENE	MO 413 S	CST MOORE RD S	37.18303	-93.34534			7/1/2018	7/1/2018
6235	SW	JASPER	RT FFE	CST INDIANA AVE S	37.05497	-94.50526	2/1/2020	2/1/2020	2/1/2020	2/1/2020
4384	SW	JASPER	RT FF E	CSTCONNECTICUTAVES	37.05488	-94.49641	6/1/2020	6/1/2020	6/1/2020	6/1/2020
2026	SW	JASPER	RT FF E	CST PROSPERITY RD S	37.05449	-94.42466	3/1/2020	3/1/2020	3/1/2020	3/1/2020
15405	SW	JASPER	RT HHE	CST HAZEL AVES	37.14026	-94.31965	1/26/2015	1/26/2015	1/26/2015	1/26/2015
1349	SW	JASPER	MO 66E	RT P E	37.08464	-94.54902	10/1/2018	10/1/2018	10/1/2018	10/1/2018

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
2505	SW	JASPER	MO66E	PVT WALMARTS	37.08466	-94.54601	4/10/2019			
6264	SW	JASPER	MO66E	CSTMAIDENLANES	37.08458	-94.53110	12/2/2019	12/2/2019	12/2/2019	12/2/2019
5683	SW	JASPER	MO66E	CSTS GENEVA AVES	37.08420	-94.47497			11/14/2014	11/14/2014
1344	SW	JASPER	MO66E	CSTNORTHPARK LNS	37.08406	-94.46830	11/14/2014			
1343	SW	JASPER	MO66E	CSTDUQUESNERD S	37.08385	-94.45912			5/14/2020	5/14/2020
13487	SW	JASPER	MO66E	.051 mile(s) after CRD GARDEN GROVES	37.08367	-94.44885		11/14/2014		
13488	SW	JASPER	MO66E	CRD TRAVIS ACRESS	37.08359	-94.44093	11/14/2014			
13489	SW	JASPER	MO 66E	CRD KENSER RD S	37.08354	-94.43633	11/14/2014	11/14/2014	11/14/2014	11/14/2014
3848	SW	JASPER	MO66E	.006 mile(s) after RP MO66 TO MO249SS	37.08333	-94.42615		11/14/2014		1/1/2001
3849	SW	JASPER	MO 66E	RP MO249N TO MO66 E	37.08330	-94.42403	11/14/2014			
1270	SW	JASPER	MO43S	CRD FOUNTAIN RDE	37.12821	-94.51135			11/17/2016	11/17/2016
2508	SW	JASPER	LP 49 S	RTTTE	37.09817	-94.47669			4/1/2015	4/1/2015
3371	SW	JASPER	LP 49 S	CST TURKEY CREEK BLVDE	37.09368	-94.47689				3/31/2015
1908	SW	JASPER	LP49 S	PVTMALLE	37.09092	-94.47695			4/1/2015	4/1/2015
14839	SW	JASPER	$\underset{\mathrm{E}}{\mathrm{E} \text { E ZORA ST }}$	CRD W ZORA STE	37.11369	-94.51024		8/7/2014		
14838	SW	JASPER	$\begin{array}{\|c\|} \hline \text { E ZORA ST } \\ E \end{array}$	CSTUNKNOWNE	37.11365	-94.50788	8/7/2014	8/7/2014		

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{gathered} \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{gathered}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
15295	SW	LAWRENCE	MO 39 S	LP 44E	37.09376	-93.82594	4/12/2016	4/12/2016	4/12/2016	4/12/2016
11945	SW	LAWRENCE	MO 39 S	MO 265 S	37.09390	-93.80476			12/19/2013	
11946	SW	LAWRENCE	MO 39 S	LP 44 E	37.09295	-93.80262				12/19/2013
1421	SW	LAWRENCE	MO 39 S	BU 60 E	36.97067	-93.71802	12/11/2018	12/11/2018	12/11/2018	12/11/2018
6133	SW	NEWTON	MO 86 E	LP 49 S	36.86829	-94.38916				1/11/2017
15697	SW	NEWTON	US 60 E	CRD ADAMS DRS	36.84100	-94.40232			11/2/2015	11/2/2015
15698	SW	NEWTON	US 60 E	CST HEARTHSIDE DR S	36.84194	-94.38649	11/2/2015	11/2/2015	11/2/2015	11/2/2015
7335	SW	STONE	MO 76 E	MO 265 S	36.67532	-93.32637	11/20/2014	11/20/2014	11/20/2014	11/20/2014
7336	SW	TANEY	US 65 S	MO 265 S	36.56963	-93.25023	8/24/2016	8/24/2016		
5693	SW	TANEY	RT FE	MO 76 E	36.71105	-93.22194		6/30/2016		
5694	SW	TANEY	RT FE	MO 76 W	36.71152	-93.21969	6/30/2016			
15975	SW	TANEY	RT FE	OR 65 S	36.71181	-93.21827	6/30/2016	6/30/2016	7/1/2016	6/30/2016
8000	SW	TANEY	$\begin{gathered} \text { BEE CREEK } \\ \text { RDS } \end{gathered}$	CST BRANSON HILLS PKWY E	36.66938	-93.22014				7/23/2020
13785	SW	TANEY	BRANSON HILLS PKWY E	OR 65 S	36.66938	-93.22392	7/23/2020	7/23/2020		
13795	SW	TANEY	BRANSON HILLS PKWY E	CRD BEE CREEK RD S	36.66939	-93.22245		7/23/2020		

SIGNAL ID	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
6268	SW	VERNON	US 54E	RT BBS	37.83723	-94.35934	8/19/2020	8/19/2020	8/19/2020	8/19/2020
4202	SW	VERNON	US 54E	CSTWASHINGTONSTS	37.83712	-94.35540	8/19/2020	8/19/2020		8/19/2020
7352	SW	CHRISTIAN	MO 14E	CRD 25TH STS	37.02334	-93.23810	5/4/2021			
7346	SW	CHRISTIAN	MO 14 E	RT M E	37.04369	-93.32666	3/29/2021	3/29/2021	3/29/2021	3/29/2021
7347	SW	CHRISTIAN	MO 14 E	CRD GREGG RD S	37.04354	-93.31748	4/8/2021	4/8/2021	4/8/2021	4/8/2021
7350	SW	CHRISTIAN	MO 14 E	CST TRUMAN BLVDS	37.04358	-93.31058	4/13/2021	4/13/2021	4/13/2021	4/13/2021
2129	SW	CHRISTIAN	US 160 E	CST SOUTH ST E	37.03998	-93.30233	10/16/2020	10/16/2020	10/16/2020	10/16/2020
14575	SW	GREENE	US 60 E	CST N OAKWOOD AVES	37.13573	-93.45242		5/24/2021		
8539	SW	GREENE	US 60 E	MO 174 E	37.12761	-93.46214	4/25/2021	4/25/2021	4/25/2021	
7351	SW	STONE	MO76E	CST BUSINESS 13 S	36.69707	-93.36926	5/25/2021	5/25/2021		5/25/2021

Southeast District

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { SOUTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$
51	SE	CAPE GIRARDEAU	US 61 S	MO 177 S	37.44280	-89.63642			7/16/2015	
3319	SE	CAPE GIRARDEAU	US 61 S	LP 55 S	37.42978	-89.63857			3/18/2016	
3321	SE	CAPE GIRARDEAU	US 61 S	OR 55 S	37.42789	-89.64141			3/18/2016	
3310	SE	CAPE GIRARDEAU	US 61 S	.005 mile(s) before CST WALTONDRE	37.36458	-89.63417			4/11/2019	4/11/2019
17025	SE	CAPE GIRARDEAU	US 61 S	CST VETERANS MEMORIAL DR S	37.34691	-89.59816			11/9/2020	11/9/2020
13425	SE	CAPE GIRARDEAU	MO 25 S	$\begin{aligned} & .003 \text { mile(s) after CSTSCHOOL } \\ & \text { LN E } \end{aligned}$	37.36593	-89.66002			5/2/2019	
3429	SE	CAPE GIRARDEAU	MO 74E	CST MT AUBURN RDS	37.28791	-89.56922	8/1/2017	8/1/2017		
2178	SE	CAPE GIRARDEAU	MO 74E	CST SILVER SPRINGS RD S	37.28973	-89.56624	8/1/2017	8/1/2017		
1704	SE	CAPE GIRARDEAU	MO 74E	CSTWESTEND BLVD S	37.29517	-89.53774	8/1/2017	8/1/2017		
4713	SE	CAPE GIRARDEAU	MO 74E	CST FOUNTAINSTS	37.29494	-89.52330	8/1/2017			
1398	SE	DOUGLAS	MO 5 S	MO 14 E	36.96120	-92.67301	8/1/2012	8/1/2012	8/1/2012	8/1/2012
4835	SE	DUNKLIN	MO 25 S	RT E	36.25122	-90.03315	10/20/2017		10/20/2017	10/20/2017
1296	SE	HOWELL	US 63 S	. 001 mile(s) before US 160W	36.74271	-91.87711	7/17/2013	7/17/2013	7/17/2013	7/17/2013
1295	SE	HOWELL	US 63 S	. 001 mile(s) before CST BROADWAYE	36.73183	-91.87738	7/17/2013	7/17/2013	7/17/2013	7/17/2013

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	EASTBOUND INSTALLATION DATE	WESTBOUND INSTALLATION DATE	$\begin{array}{\|c\|} \hline \text { NORTHBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	SOUTHBOUND INSTALLATION DATE
1294	SE	HOWELL	US 63 S	. 002 mile(s) before RTK E	36.72576	-91.87752	7/17/2013	7/17/2013	7/17/2013	7/17/2013
3793	SE	HOWELL	US 63 S	. 001 mile(s) before US 160E	36.71796	-91.87275			7/17/2013	7/17/2013
15205	SE	HOWELL	US 63 S	CST RAMSEUR FARM RDE	36.71678	-91.85987	7/17/2013	7/17/2013	7/17/2013	7/17/2013
2063	SE	HOWELL	US 63 S	MO 17 S	36.71654	-91.85080	7/17/2013	7/17/2013	7/17/2013	7/17/2013
15206	SE	HOWELL	US 63 S	CST LANTON RD S	36.71632	-91.84147	7/17/2013	7/17/2013	7/17/2013	7/17/2013
3803	SE	HOWELL	US 63 S	BU 63 S	36.71595	-91.83128	7/17/2013	7/17/2013	7/17/2013	7/17/2013
92	SE	HOWELL	BU 63 S	CST GIRDLEYST E	36.75349	-91.87242	6/27/2018	6/27/2018		
1297	SE	HOWELL	BU 63 S	US 160 E	36.74260	-91.87216	3/1/2011	3/1/2011	3/1/2011	3/1/2011
2422	SE	HOWELL	BU 63 S	CSTWASHINGTON AVES	36.73112	-91.85250	8/2/2010	8/2/2010	8/2/2010	8/2/2010
3802	SE	HOWELL	US 160 E	CST BRUCE SMITH PKWYS	36.71240	-91.87515	7/17/2013	7/17/2013	7/17/2013	7/17/2013
3801	SE	HOWELL	US 160E	PVTSOUTHERN HILLS DR S	36.71422	-91.87436	7/17/2013	7/17/2013	7/17/2013	7/17/2013
3800	SE	HOWELL	US 160 E	CST WORLEY DR S	36.71610	-91.87355	7/17/2013	7/17/2013	7/17/2013	7/17/2013
5395	SE	MADISON	MO 72 E	. 002 mile(s) after OR 67S	37.56275	-90.31980		11/18/2018		
4795	SE	NEW MADRID	US 61 S	.006 mile(s) before CST PLANTATION BLVDE	36.86657	-89.58104			9/9/2012	9/9/2012
4796	SE	NEW MADRID	US 61 S	CSTSTALLCUP E	36.86170	-89.58355			9/9/2012	9/9/2012
1225	SE	NEW MADRID	US 61 S	RP US60W TO US62 W	36.85660	-89.58284			8/29/2013	
4783	SE	NEW MADRID	US 61 S	BU 60 E	36.85468	-89.58242				8/29/2013

$\begin{gathered} \text { SIGNAL } \\ \text { ID } \end{gathered}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
15335	SE	NEW MADRID	US 61 N	.001 mile(s) before CST LARCEL DRE	36.85323	-89.58213			11/14/2014	11/14/2014
6037	SE	PEMISCOT	MO 84 E	RP M084 TO IS55SS	36.23172	-89.73224		8/11/2011		
6036	SE	PEMISCOT	MO 84 E	RP IS55N TO MO84 E	36.23105	-89.73073	8/11/2011			
3439	SE	PERRY	MO51S	RP MO51 TO IS55N N	37.71040	-89.89146			9/3/2015	
3440	SE	PERRY	MO 51 S	RP M051 TO IS55SS	37.70875	-89.89227				9/3/2015
4847	SE	SCOTT	US 61 S	CSTSMITH AVEE	36.88557	-89.58131				5/15/2014
4846	SE	SCOTT	US 61 S	CSTTANNER STE	36.88176	-89.58042			10/18/2012	10/18/2012
5025	SE	SCOTT	US 61 S	CST LAKESTE	36.88083	-89.58026			11/1/2012	11/1/2012
4798	SE	SCOTT	US 61 S	CST HELENAVE E	36.87123	-89.57836			4/17/2013	4/17/2013
956	SE	SCOTT	MO 114 E	CST NEW MADRID S	36.87631	-89.58900	12/21/2011	12/21/2011	12/21/2011	12/21/2011
4849	SE	SCOTT	MO 114 E	CSTN KINGSHIGHWAYS	36.87674	-89.58755	12/21/2011	12/21/2011	12/21/2011	12/21/2011
5160	SE	SCOTT	US 62E	CST PINE ST S	36.88051	-89.57437	9/24/2012	9/24/2012	9/24/2012	9/24/2012
4850	SE	SCOTT	US 62E	CSTINGRAM RDS	36.88166	-89.57055	4/18/2013	4/18/2013		
4851	SE	SCOTT	US 62E	CSTSELMA AVE S	36.88332	-89.56489	9/24/2012	9/24/2012	9/24/2012	9/24/2012
1221	SE	ST. FRANCOIS	MO47S	CST RAIDER RD S	37.92237	-90.54040			9/25/2012	9/25/2012
6296	SE	ST. FRANCOIS	MO 47S	RT K E	37.92220	-90.53902			9/25/2012	
6096	SE	ST. FRANCOIS	MO47S	RTKE	37.92207	-90.53771				9/25/2012

$\begin{aligned} & \text { SIGNAL } \\ & \text { ID } \end{aligned}$	DISTRICT	COUNTY	ROUTE	CROSS STREET	LATITUDE	LONGITUDE	$\begin{array}{\|c\|} \hline \text { EASTBOUND } \\ \text { INSTALLATION } \\ \text { DATE } \end{array}$	WESTBOUND INSTALLATION DATE	NORTHBOUND INSTALLATION DATE	SOUTHBOUND INSTALLATION DATE
1287	SE	TEXAS	US 63S	MO 17S	37.31962	-91.95874			5/1/2016	5/1/2016
3810	SE	TEXAS	US 63S	CSTHOLDER DRE	37.31249	-91.96037			5/1/2016	5/1/2016
7197	SE	WRIGHT	MO 95S	RP MO95 TO US60WW	37.14810	-92.26269			6/1/2014	
2117	SE	WRIGHT	MO95 S	RP MO95 TO US60EE	37.14663	-92.26269				6/1/2014

